Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1996 Sep;16(9):5058–5068. doi: 10.1128/mcb.16.9.5058

E-box sites and a proximal regulatory region of the muscle creatine kinase gene differentially regulate expression in diverse skeletal muscles and cardiac muscle of transgenic mice.

M A Shield 1, H S Haugen 1, C H Clegg 1, S D Hauschka 1
PMCID: PMC231507  PMID: 8756664

Abstract

Previous analysis of the muscle creatine kinase (MCK) gene indicated that control elements required for transcription in adult mouse muscle differed from those required in cell culture, suggesting that distinct modes of muscle gene regulation occur in vivo. To examine this further, we measured the activity of MCK transgenes containing E-box and promoter deletions in a variety of striated muscles. Simultaneous mutation of three E boxes in the 1,256-bp MCK 5' region, which abolished transcription in muscle cultures, had strikingly different effects in mice. The mutations abolished transgene expression in cardiac and tongue muscle and caused a reduction in expression in the soleus muscle (a muscle with many slow fibers) but did not affect expression in predominantly fast muscles: quadriceps, abdominals, and extensor digitorum longus. Other regulatory sequences with muscle-type-specific activities were found within the 358-bp 5'-flanking region. This proximal region conferred relatively strong expression in limb and abdominal skeletal muscles but was inactive in cardiac and tongue muscles. However, when the 206-bp 5' enhancer was ligated to the 358-bp region, high levels of tissue-specific expression were restored in all muscle types. These results indicate that E boxes and a proximal regulatory region are differentially required for maximal MCK transgene expression in different striated muscles. The overall results also imply that within skeletal muscles, the steady-state expression of the MCK gene and possibly other muscle genes depends on transcriptional mechanisms that differ between fast and slow fibers as well as between the anatomical and physiological attributes of each specific muscle.

Full Text

The Full Text of this article is available as a PDF (335.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amacher S. L., Buskin J. N., Hauschka S. D. Multiple regulatory elements contribute differentially to muscle creatine kinase enhancer activity in skeletal and cardiac muscle. Mol Cell Biol. 1993 May;13(5):2753–2764. doi: 10.1128/mcb.13.5.2753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Apone S., Hauschka S. D. Muscle gene E-box control elements. Evidence for quantitatively different transcriptional activities and the binding of distinct regulatory factors. J Biol Chem. 1995 Sep 8;270(36):21420–21427. doi: 10.1074/jbc.270.36.21420. [DOI] [PubMed] [Google Scholar]
  3. Ausoni S., Gorza L., Schiaffino S., Gundersen K., Lømo T. Expression of myosin heavy chain isoforms in stimulated fast and slow rat muscles. J Neurosci. 1990 Jan;10(1):153–160. doi: 10.1523/JNEUROSCI.10-01-00153.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Banerjee-Basu S., Buonanno A. Isolation and structure of the rat gene encoding troponin I(slow). Gene. 1994 Aug 5;145(2):241–244. doi: 10.1016/0378-1119(94)90013-2. [DOI] [PubMed] [Google Scholar]
  5. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  6. Brouillette R. T., Thach B. T. Control of genioglossus muscle inspiratory activity. J Appl Physiol Respir Environ Exerc Physiol. 1980 Nov;49(5):801–808. doi: 10.1152/jappl.1980.49.5.801. [DOI] [PubMed] [Google Scholar]
  7. Buskin J. N., Hauschka S. D. Identification of a myocyte nuclear factor that binds to the muscle-specific enhancer of the mouse muscle creatine kinase gene. Mol Cell Biol. 1989 Jun;9(6):2627–2640. doi: 10.1128/mcb.9.6.2627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chamberlain J. S., Jaynes J. B., Hauschka S. D. Regulation of creatine kinase induction in differentiating mouse myoblasts. Mol Cell Biol. 1985 Mar;5(3):484–492. doi: 10.1128/mcb.5.3.484. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chen C. Y., Schwartz R. J. Identification of novel DNA binding targets and regulatory domains of a murine tinman homeodomain factor, nkx-2.5. J Biol Chem. 1995 Jun 30;270(26):15628–15633. doi: 10.1074/jbc.270.26.15628. [DOI] [PubMed] [Google Scholar]
  10. Chien K. R., Zhu H., Knowlton K. U., Miller-Hance W., van-Bilsen M., O'Brien T. X., Evans S. M. Transcriptional regulation during cardiac growth and development. Annu Rev Physiol. 1993;55:77–95. doi: 10.1146/annurev.ph.55.030193.000453. [DOI] [PubMed] [Google Scholar]
  11. Christensen T. H., Prentice H., Gahlmann R., Kedes L. Regulation of the human cardiac/slow-twitch troponin C gene by multiple, cooperative, cell-type-specific, and MyoD-responsive elements. Mol Cell Biol. 1993 Nov;13(11):6752–6765. doi: 10.1128/mcb.13.11.6752. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Cox G. A., Cole N. M., Matsumura K., Phelps S. F., Hauschka S. D., Campbell K. P., Faulkner J. A., Chamberlain J. S. Overexpression of dystrophin in transgenic mdx mice eliminates dystrophic symptoms without toxicity. Nature. 1993 Aug 19;364(6439):725–729. doi: 10.1038/364725a0. [DOI] [PubMed] [Google Scholar]
  13. DiMario J. X., Fernyak S. E., Stockdale F. E. Myoblasts transferred to the limbs of embryos are committed to specific fibre fates. Nature. 1993 Mar 11;362(6416):165–167. doi: 10.1038/362165a0. [DOI] [PubMed] [Google Scholar]
  14. Donoghue M. J., Sanes J. R. All muscles are not created equal. Trends Genet. 1994 Nov;10(11):396–401. doi: 10.1016/0168-9525(94)90056-6. [DOI] [PubMed] [Google Scholar]
  15. Donoviel D. B., Shield M. A., Buskin J. N., Haugen H. S., Clegg C. H., Hauschka S. D. Analysis of muscle creatine kinase gene regulatory elements in skeletal and cardiac muscles of transgenic mice. Mol Cell Biol. 1996 Apr;16(4):1649–1658. doi: 10.1128/mcb.16.4.1649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Edmondson D. G., Olson E. N. Helix-loop-helix proteins as regulators of muscle-specific transcription. J Biol Chem. 1993 Jan 15;268(2):755–758. [PubMed] [Google Scholar]
  17. Evans S. M., O'Brien T. X. Expression of the helix-loop-helix factor Id during mouse embryonic development. Dev Biol. 1993 Oct;159(2):485–499. doi: 10.1006/dbio.1993.1258. [DOI] [PubMed] [Google Scholar]
  18. Goldspink G., Scutt A., Loughna P. T., Wells D. J., Jaenicke T., Gerlach G. F. Gene expression in skeletal muscle in response to stretch and force generation. Am J Physiol. 1992 Mar;262(3 Pt 2):R356–R363. doi: 10.1152/ajpregu.1992.262.3.R356. [DOI] [PubMed] [Google Scholar]
  19. Gorman C. M., Moffat L. F., Howard B. H. Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Mol Cell Biol. 1982 Sep;2(9):1044–1051. doi: 10.1128/mcb.2.9.1044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Gossett L. A., Kelvin D. J., Sternberg E. A., Olson E. N. A new myocyte-specific enhancer-binding factor that recognizes a conserved element associated with multiple muscle-specific genes. Mol Cell Biol. 1989 Nov;9(11):5022–5033. doi: 10.1128/mcb.9.11.5022. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Gunning P., Hardeman E. Multiple mechanisms regulate muscle fiber diversity. FASEB J. 1991 Dec;5(15):3064–3070. doi: 10.1096/fasebj.5.15.1835946. [DOI] [PubMed] [Google Scholar]
  22. Hallauer P. L., Bradshaw H. L., Hastings K. E. Complex fiber-type-specific expression of fast skeletal muscle troponin I gene constructs in transgenic mice. Development. 1993 Nov;119(3):691–701. doi: 10.1242/dev.119.3.691. [DOI] [PubMed] [Google Scholar]
  23. Hollenberg S. M., Sternglanz R., Cheng P. F., Weintraub H. Identification of a new family of tissue-specific basic helix-loop-helix proteins with a two-hybrid system. Mol Cell Biol. 1995 Jul;15(7):3813–3822. doi: 10.1128/mcb.15.7.3813. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Horlick R. A., Benfield P. A. The upstream muscle-specific enhancer of the rat muscle creatine kinase gene is composed of multiple elements. Mol Cell Biol. 1989 Jun;9(6):2396–2413. doi: 10.1128/mcb.9.6.2396. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Hughes S. M., Taylor J. M., Tapscott S. J., Gurley C. M., Carter W. J., Peterson C. A. Selective accumulation of MyoD and myogenin mRNAs in fast and slow adult skeletal muscle is controlled by innervation and hormones. Development. 1993 Aug;118(4):1137–1147. doi: 10.1242/dev.118.4.1137. [DOI] [PubMed] [Google Scholar]
  26. Hämäläinen N., Pette D. The histochemical profiles of fast fiber types IIB, IID, and IIA in skeletal muscles of mouse, rat, and rabbit. J Histochem Cytochem. 1993 May;41(5):733–743. doi: 10.1177/41.5.8468455. [DOI] [PubMed] [Google Scholar]
  27. Jackson P., Shield M., Buskin J., Hawkes S., Reed M., Perrem K., Hauschka S. D., Braithwaite A. p53-dependent activation of the mouse MCK gene promoter: identification of a novel p53-responsive sequence and evidence for cooperation between distinct p53 binding sites. Gene Expr. 1995;5(1):19–33. [PMC free article] [PubMed] [Google Scholar]
  28. Jaenisch R. Transgenic animals. Science. 1988 Jun 10;240(4858):1468–1474. doi: 10.1126/science.3287623. [DOI] [PubMed] [Google Scholar]
  29. Jaynes J. B., Chamberlain J. S., Buskin J. N., Johnson J. E., Hauschka S. D. Transcriptional regulation of the muscle creatine kinase gene and regulated expression in transfected mouse myoblasts. Mol Cell Biol. 1986 Aug;6(8):2855–2864. doi: 10.1128/mcb.6.8.2855. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Jaynes J. B., Johnson J. E., Buskin J. N., Gartside C. L., Hauschka S. D. The muscle creatine kinase gene is regulated by multiple upstream elements, including a muscle-specific enhancer. Mol Cell Biol. 1988 Jan;8(1):62–70. doi: 10.1128/mcb.8.1.62. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Johnson J. E., Wold B. J., Hauschka S. D. Muscle creatine kinase sequence elements regulating skeletal and cardiac muscle expression in transgenic mice. Mol Cell Biol. 1989 Aug;9(8):3393–3399. doi: 10.1128/mcb.9.8.3393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Karpati G., Acsadi G. The potential for gene therapy in Duchenne muscular dystrophy and other genetic muscle diseases. Muscle Nerve. 1993 Nov;16(11):1141–1153. doi: 10.1002/mus.880161102. [DOI] [PubMed] [Google Scholar]
  33. Knotts S., Rindt H., Neumann J., Robbins J. In vivo regulation of the mouse beta myosin heavy chain gene. J Biol Chem. 1994 Dec 9;269(49):31275–31282. [PubMed] [Google Scholar]
  34. Kurabayashi M., Jeyaseelan R., Kedes L. Two distinct cDNA sequences encoding the human helix-loop-helix protein Id2. Gene. 1993 Nov 15;133(2):305–306. doi: 10.1016/0378-1119(93)90658-p. [DOI] [PubMed] [Google Scholar]
  35. LaFramboise W. A., Watchko J. F., Brozanski B. S., Daood M. J., Guthrie R. D. Myosin heavy chain expression in respiratory muscles of the rat. Am J Respir Cell Mol Biol. 1992 Mar;6(3):335–339. doi: 10.1165/ajrcmb/6.3.335. [DOI] [PubMed] [Google Scholar]
  36. Lassar A. B., Buskin J. N., Lockshon D., Davis R. L., Apone S., Hauschka S. D., Weintraub H. MyoD is a sequence-specific DNA binding protein requiring a region of myc homology to bind to the muscle creatine kinase enhancer. Cell. 1989 Sep 8;58(5):823–831. doi: 10.1016/0092-8674(89)90935-5. [DOI] [PubMed] [Google Scholar]
  37. Lints T. J., Parsons L. M., Hartley L., Lyons I., Harvey R. P. Nkx-2.5: a novel murine homeobox gene expressed in early heart progenitor cells and their myogenic descendants. Development. 1993 Oct;119(2):419–431. doi: 10.1242/dev.119.2.419. [DOI] [PubMed] [Google Scholar]
  38. Litvin J., Montgomery M. O., Goldhamer D. J., Emerson C. P., Jr, Bader D. M. Identification of DNA-binding protein(s) in the developing heart. Dev Biol. 1993 Apr;156(2):409–417. doi: 10.1006/dbio.1993.1088. [DOI] [PubMed] [Google Scholar]
  39. Miller J. B., Everitt E. A., Smith T. H., Block N. E., Dominov J. A. Cellular and molecular diversity in skeletal muscle development: news from in vitro and in vivo. Bioessays. 1993 Mar;15(3):191–196. doi: 10.1002/bies.950150308. [DOI] [PubMed] [Google Scholar]
  40. Molkentin J. D., Brogan R. S., Jobe S. M., Markham B. E. Expression of the alpha-myosin heavy chain gene in the heart is regulated in part by an E-box-dependent mechanism. J Biol Chem. 1993 Feb 5;268(4):2602–2609. [PubMed] [Google Scholar]
  41. Murre C., McCaw P. S., Vaessin H., Caudy M., Jan L. Y., Jan Y. N., Cabrera C. V., Buskin J. N., Hauschka S. D., Lassar A. B. Interactions between heterologous helix-loop-helix proteins generate complexes that bind specifically to a common DNA sequence. Cell. 1989 Aug 11;58(3):537–544. doi: 10.1016/0092-8674(89)90434-0. [DOI] [PubMed] [Google Scholar]
  42. Muscat G. E., Mynett-Johnson L., Dowhan D., Downes M., Griggs R. Activation of myoD gene transcription by 3,5,3'-triiodo-L-thyronine: a direct role for the thyroid hormone and retinoid X receptors. Nucleic Acids Res. 1994 Feb 25;22(4):583–591. doi: 10.1093/nar/22.4.583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Navankasattusas S., Sawadogo M., van Bilsen M., Dang C. V., Chien K. R. The basic helix-loop-helix protein upstream stimulating factor regulates the cardiac ventricular myosin light-chain 2 gene via independent cis regulatory elements. Mol Cell Biol. 1994 Nov;14(11):7331–7339. doi: 10.1128/mcb.14.11.7331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Onal E., Lopata M., O'Connor T. D. Diaphragmatic and genioglossal electromyogram responses to CO2 rebreathing in humans. J Appl Physiol Respir Environ Exerc Physiol. 1981 May;50(5):1052–1055. doi: 10.1152/jappl.1981.50.5.1052. [DOI] [PubMed] [Google Scholar]
  45. Palmiter R. D., Brinster R. L. Germ-line transformation of mice. Annu Rev Genet. 1986;20:465–499. doi: 10.1146/annurev.ge.20.120186.002341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Pari G., Jardine K., McBurney M. W. Multiple CArG boxes in the human cardiac actin gene promoter required for expression in embryonic cardiac muscle cells developing in vitro from embryonal carcinoma cells. Mol Cell Biol. 1991 Sep;11(9):4796–4803. doi: 10.1128/mcb.11.9.4796. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Parmacek M. S., Ip H. S., Jung F., Shen T., Martin J. F., Vora A. J., Olson E. N., Leiden J. M. A novel myogenic regulatory circuit controls slow/cardiac troponin C gene transcription in skeletal muscle. Mol Cell Biol. 1994 Mar;14(3):1870–1885. doi: 10.1128/mcb.14.3.1870. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Pette D., Staron R. S. Cellular and molecular diversities of mammalian skeletal muscle fibers. Rev Physiol Biochem Pharmacol. 1990;116:1–76. doi: 10.1007/3540528806_3. [DOI] [PubMed] [Google Scholar]
  49. Ragot T., Vincent N., Chafey P., Vigne E., Gilgenkrantz H., Couton D., Cartaud J., Briand P., Kaplan J. C., Perricaudet M. Efficient adenovirus-mediated transfer of a human minidystrophin gene to skeletal muscle of mdx mice. Nature. 1993 Feb 18;361(6413):647–650. doi: 10.1038/361647a0. [DOI] [PubMed] [Google Scholar]
  50. Rindt H., Knotts S., Robbins J. Segregation of cardiac and skeletal muscle-specific regulatory elements of the beta-myosin heavy chain gene. Proc Natl Acad Sci U S A. 1995 Feb 28;92(5):1540–1544. doi: 10.1073/pnas.92.5.1540. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Salminen M., López S., Maire P., Kahn A., Daegelen D. Fast-muscle-specific DNA-protein interactions occurring in vivo at the human aldolase A M promoter are necessary for correct promoter activity in transgenic mice. Mol Cell Biol. 1996 Jan;16(1):76–85. doi: 10.1128/mcb.16.1.76. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Salminen M., Maire P., Concordet J. P., Moch C., Porteu A., Kahn A., Daegelen D. Fast-muscle-specific expression of human aldolase A transgenes. Mol Cell Biol. 1994 Oct;14(10):6797–6808. doi: 10.1128/mcb.14.10.6797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Sartorelli V., Hong N. A., Bishopric N. H., Kedes L. Myocardial activation of the human cardiac alpha-actin promoter by helix-loop-helix proteins. Proc Natl Acad Sci U S A. 1992 May 1;89(9):4047–4051. doi: 10.1073/pnas.89.9.4047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Schiaffino S., Reggiani C. Myosin isoforms in mammalian skeletal muscle. J Appl Physiol (1985) 1994 Aug;77(2):493–501. doi: 10.1152/jappl.1994.77.2.493. [DOI] [PubMed] [Google Scholar]
  55. Shaw W. V., Brodsky R. F. Characterization of chloramphenicol acetyltransferase from chloramphenicol-resistant Staphylococcus aureus. J Bacteriol. 1968 Jan;95(1):28–36. doi: 10.1128/jb.95.1.28-36.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Springhorn J. P., Singh K., Kelly R. A., Smith T. W. Posttranscriptional regulation of Id1 activity in cardiac muscle. Alternative splicing of novel Id1 transcript permits homodimerization. J Biol Chem. 1994 Feb 18;269(7):5132–5136. [PubMed] [Google Scholar]
  57. Srivastava D., Cserjesi P., Olson E. N. A subclass of bHLH proteins required for cardiac morphogenesis. Science. 1995 Dec 22;270(5244):1995–1999. doi: 10.1126/science.270.5244.1995. [DOI] [PubMed] [Google Scholar]
  58. Sternberg E. A., Spizz G., Perry W. M., Vizard D., Weil T., Olson E. N. Identification of upstream and intragenic regulatory elements that confer cell-type-restricted and differentiation-specific expression on the muscle creatine kinase gene. Mol Cell Biol. 1988 Jul;8(7):2896–2909. doi: 10.1128/mcb.8.7.2896. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Trask R. V., Strauss A. W., Billadello J. J. Developmental regulation and tissue-specific expression of the human muscle creatine kinase gene. J Biol Chem. 1988 Nov 15;263(32):17142–17149. [PubMed] [Google Scholar]
  60. Tsika R. W., Hauschka S. D., Gao L. M-creatine kinase gene expression in mechanically overloaded skeletal muscle of transgenic mice. Am J Physiol. 1995 Sep;269(3 Pt 1):C665–C674. doi: 10.1152/ajpcell.1995.269.3.C665. [DOI] [PubMed] [Google Scholar]
  61. Vincent C. K., Gualberto A., Patel C. V., Walsh K. Different regulatory sequences control creatine kinase-M gene expression in directly injected skeletal and cardiac muscle. Mol Cell Biol. 1993 Feb;13(2):1264–1272. doi: 10.1128/mcb.13.2.1264. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Voytik S. L., Przyborski M., Badylak S. F., Konieczny S. F. Differential expression of muscle regulatory factor genes in normal and denervated adult rat hindlimb muscles. Dev Dyn. 1993 Nov;198(3):214–224. doi: 10.1002/aja.1001980307. [DOI] [PubMed] [Google Scholar]
  63. Weintraub H. The MyoD family and myogenesis: redundancy, networks, and thresholds. Cell. 1993 Dec 31;75(7):1241–1244. doi: 10.1016/0092-8674(93)90610-3. [DOI] [PubMed] [Google Scholar]
  64. Wigston D. J., English A. W. Fiber-type proportions in mammalian soleus muscle during postnatal development. J Neurobiol. 1992 Feb;23(1):61–70. doi: 10.1002/neu.480230107. [DOI] [PubMed] [Google Scholar]
  65. Yamashita K., Yoshioka T. Profiles of creatine kinase isoenzyme compositions in single muscle fibres of different types. J Muscle Res Cell Motil. 1991 Feb;12(1):37–44. doi: 10.1007/BF01781172. [DOI] [PubMed] [Google Scholar]
  66. Yi T. M., Walsh K., Schimmel P. Rabbit muscle creatine kinase: genomic cloning, sequencing, and analysis of upstream sequences important for expression in myocytes. Nucleic Acids Res. 1991 Jun 11;19(11):3027–3033. doi: 10.1093/nar/19.11.3027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Zhao J., Schmieg F. I., Simmons D. T., Molloy G. R. Mouse p53 represses the rat brain creatine kinase gene but activates the rat muscle creatine kinase gene. Mol Cell Biol. 1994 Dec;14(12):8483–8492. doi: 10.1128/mcb.14.12.8483. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES