Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1996 Oct;16(10):5365–5374. doi: 10.1128/mcb.16.10.5365

Interdependent transcription control elements regulate the expression of the SPRR2A gene during keratinocyte terminal differentiation.

D F Fischer 1, S Gibbs 1, P van De Putte 1, C Backendorf 1
PMCID: PMC231535  PMID: 8816448

Abstract

Expression of the SPRR2A gene, a member of the small proline-rich family of cornified cell envelope precursor proteins, is strictly linked to keratinocyte terminal differentiation both in vivo and in vitro. In this study, we explored the molecular mechanisms underlying this regulation in transiently transfected primary keratinocytes induced to differentiate in vitro. Deletion mapping and site-directed mutagenesis of SPRR2A promoter-chloramphenicol acetyltransferase constructs indicate that four transcription control elements are essential and sufficient for promoter activity. These elements were further characterized by electrophoretic mobility shift and identified as (i) an inverted octamer doublet, bound by the POU domain factor Oct-11 (Skn-1a/i, Epoc-1), (ii) an interferon-stimulated response element recognized by interferon regulatory factors 1 and 2, (iii) an Ets binding site partially overlapping the interferon-stimulated response element, and (iv) a TG box recognized by the Sp1 family of zinc finger transcription factors. Destruction of a single terminal differentiation element is sufficient to completely abolish transcription from the SPRR2A promoter, indicating that these transcription control elements function in concert in an interdependent manner. Apparently, integration of signals transmitted by the above-mentioned transcription factors is necessary and sufficient to promote gene expression during keratinocyte terminal differentiation.

Full Text

The Full Text of this article is available as a PDF (406.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams J. C., Watt F. M. Changes in keratinocyte adhesion during terminal differentiation: reduction in fibronectin binding precedes alpha 5 beta 1 integrin loss from the cell surface. Cell. 1990 Oct 19;63(2):425–435. doi: 10.1016/0092-8674(90)90175-e. [DOI] [PubMed] [Google Scholar]
  2. Adams J. C., Watt F. M. Fibronectin inhibits the terminal differentiation of human keratinocytes. Nature. 1989 Jul 27;340(6231):307–309. doi: 10.1038/340307a0. [DOI] [PubMed] [Google Scholar]
  3. Andersen B., Schonemann M. D., Flynn S. E., Pearse R. V., 2nd, Singh H., Rosenfeld M. G. Skn-1a and Skn-1i: two functionally distinct Oct-2-related factors expressed in epidermis. Science. 1993 Apr 2;260(5104):78–82. doi: 10.1126/science.7682011. [DOI] [PubMed] [Google Scholar]
  4. Backendorf C., Hohl D. A common origin for cornified envelope proteins? Nat Genet. 1992 Oct;2(2):91–91. doi: 10.1038/ng1092-91. [DOI] [PubMed] [Google Scholar]
  5. Belt P. B., Groeneveld H., Teubel W. J., van de Putte P., Backendorf C. Construction and properties of an Epstein-Barr-virus-derived cDNA expression vector for human cells. Gene. 1989 Dec 14;84(2):407–417. doi: 10.1016/0378-1119(89)90515-5. [DOI] [PubMed] [Google Scholar]
  6. Crepieux P., Coll J., Stehelin D. The Ets family of proteins: weak modulators of gene expression in quest for transcriptional partners. Crit Rev Oncog. 1994;5(6):615–638. [PubMed] [Google Scholar]
  7. Fuchs E., Byrne C. The epidermis: rising to the surface. Curr Opin Genet Dev. 1994 Oct;4(5):725–736. doi: 10.1016/0959-437x(94)90140-x. [DOI] [PubMed] [Google Scholar]
  8. Fujimoto W., Marvin K. W., George M. D., Celli G., Darwiche N., De Luca L. M., Jetten A. M. Expression of cornifin in squamous differentiating epithelial tissues, including psoriatic and retinoic acid-treated skin. J Invest Dermatol. 1993 Sep;101(3):268–274. doi: 10.1111/1523-1747.ep12365200. [DOI] [PubMed] [Google Scholar]
  9. Gandarillas A., Watt F. M. Changes in expression of members of the fos and jun families and myc network during terminal differentiation of human keratinocytes. Oncogene. 1995 Oct 5;11(7):1403–1407. [PubMed] [Google Scholar]
  10. Gandarillas A., Watt F. M. The 5' noncoding region of the mouse involucrin gene: comparison with the human gene and genes encoding other cornified envelope precursors. Mamm Genome. 1995 Sep;6(9):680–682. doi: 10.1007/BF00352383. [DOI] [PubMed] [Google Scholar]
  11. Garmyn M., Yaar M., Boileau N., Backendorf C., Gilchrest B. A. Effect of aging and habitual sun exposure on the genetic response of cultured human keratinocytes to solar-simulated irradiation. J Invest Dermatol. 1992 Dec;99(6):743–748. doi: 10.1111/1523-1747.ep12614470. [DOI] [PubMed] [Google Scholar]
  12. Gashler A., Sukhatme V. P. Early growth response protein 1 (Egr-1): prototype of a zinc-finger family of transcription factors. Prog Nucleic Acid Res Mol Biol. 1995;50:191–224. doi: 10.1016/s0079-6603(08)60815-6. [DOI] [PubMed] [Google Scholar]
  13. Gibbs S., Fijneman R., Wiegant J., van Kessel A. G., van De Putte P., Backendorf C. Molecular characterization and evolution of the SPRR family of keratinocyte differentiation markers encoding small proline-rich proteins. Genomics. 1993 Jun;16(3):630–637. doi: 10.1006/geno.1993.1240. [DOI] [PubMed] [Google Scholar]
  14. Gibbs S., Lohman F., Teubel W., van de Putte P., Backendorf C. Characterization of the human spr2 promoter: induction after UV irradiation or TPA treatment and regulation during differentiation of cultured primary keratinocytes. Nucleic Acids Res. 1990 Aug 11;18(15):4401–4407. doi: 10.1093/nar/18.15.4401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Goldsborough A. S., Healy L. E., Copeland N. G., Gilbert D. J., Jenkins N. A., Willison K. R., Ashworth A. Cloning, chromosomal localization and expression pattern of the POU domain gene Oct-11. Nucleic Acids Res. 1993 Jan 11;21(1):127–134. doi: 10.1093/nar/21.1.127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gorman C. M., Moffat L. F., Howard B. H. Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Mol Cell Biol. 1982 Sep;2(9):1044–1051. doi: 10.1128/mcb.2.9.1044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Greco M. A., Lorand L., Lane W. S., Baden H. P., Parameswaran K. N., Kvedar J. C. The pancornulins: a group of small proline rich-related cornified envelope precursors with bifunctional capabilities in isopeptide bond formation. J Invest Dermatol. 1995 Feb;104(2):204–210. doi: 10.1111/1523-1747.ep12612759. [DOI] [PubMed] [Google Scholar]
  18. Green H. Terminal differentiation of cultured human epidermal cells. Cell. 1977 Jun;11(2):405–416. doi: 10.1016/0092-8674(77)90058-7. [DOI] [PubMed] [Google Scholar]
  19. Hagen G., Müller S., Beato M., Suske G. Cloning by recognition site screening of two novel GT box binding proteins: a family of Sp1 related genes. Nucleic Acids Res. 1992 Nov 11;20(21):5519–5525. doi: 10.1093/nar/20.21.5519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hagen G., Müller S., Beato M., Suske G. Sp1-mediated transcriptional activation is repressed by Sp3. EMBO J. 1994 Aug 15;13(16):3843–3851. doi: 10.1002/j.1460-2075.1994.tb06695.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hamilton T. B., Barilla K. C., Romaniuk P. J. High affinity binding sites for the Wilms' tumour suppressor protein WT1. Nucleic Acids Res. 1995 Jan 25;23(2):277–284. doi: 10.1093/nar/23.2.277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Harada H., Fujita T., Miyamoto M., Kimura Y., Maruyama M., Furia A., Miyata T., Taniguchi T. Structurally similar but functionally distinct factors, IRF-1 and IRF-2, bind to the same regulatory elements of IFN and IFN-inducible genes. Cell. 1989 Aug 25;58(4):729–739. doi: 10.1016/0092-8674(89)90107-4. [DOI] [PubMed] [Google Scholar]
  23. Harada H., Kitagawa M., Tanaka N., Yamamoto H., Harada K., Ishihara M., Taniguchi T. Anti-oncogenic and oncogenic potentials of interferon regulatory factors-1 and -2. Science. 1993 Feb 12;259(5097):971–974. doi: 10.1126/science.8438157. [DOI] [PubMed] [Google Scholar]
  24. Harada H., Willison K., Sakakibara J., Miyamoto M., Fujita T., Taniguchi T. Absence of the type I IFN system in EC cells: transcriptional activator (IRF-1) and repressor (IRF-2) genes are developmentally regulated. Cell. 1990 Oct 19;63(2):303–312. doi: 10.1016/0092-8674(90)90163-9. [DOI] [PubMed] [Google Scholar]
  25. Hardas B. D., Zhang J., Trent J. M., Elder J. T. Direct evidence for homologous sequences on the paracentric regions of human chromosome 1. Genomics. 1994 May 15;21(2):359–363. doi: 10.1006/geno.1994.1277. [DOI] [PubMed] [Google Scholar]
  26. Hennings H., Michael D., Cheng C., Steinert P., Holbrook K., Yuspa S. H. Calcium regulation of growth and differentiation of mouse epidermal cells in culture. Cell. 1980 Jan;19(1):245–254. doi: 10.1016/0092-8674(80)90406-7. [DOI] [PubMed] [Google Scholar]
  27. Herr W., Cleary M. A. The POU domain: versatility in transcriptional regulation by a flexible two-in-one DNA-binding domain. Genes Dev. 1995 Jul 15;9(14):1679–1693. doi: 10.1101/gad.9.14.1679. [DOI] [PubMed] [Google Scholar]
  28. Hodivala K. J., Watt F. M. Evidence that cadherins play a role in the downregulation of integrin expression that occurs during keratinocyte terminal differentiation. J Cell Biol. 1994 Feb;124(4):589–600. doi: 10.1083/jcb.124.4.589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Hohl D., Ruf Olano B., de Viragh P. A., Huber M., Detrisac C. J., Schnyder U. W., Roop D. R. Expression patterns of loricrin in various species and tissues. Differentiation. 1993 Aug;54(1):25–34. doi: 10.1111/j.1432-0436.1993.tb00656.x. [DOI] [PubMed] [Google Scholar]
  30. Hohl D., de Viragh P. A., Amiguet-Barras F., Gibbs S., Backendorf C., Huber M. The small proline-rich proteins constitute a multigene family of differentially regulated cornified cell envelope precursor proteins. J Invest Dermatol. 1995 Jun;104(6):902–909. doi: 10.1111/1523-1747.ep12606176. [DOI] [PubMed] [Google Scholar]
  31. Hotchin N. A., Gandarillas A., Watt F. M. Regulation of cell surface beta 1 integrin levels during keratinocyte terminal differentiation. J Cell Biol. 1995 Mar;128(6):1209–1219. doi: 10.1083/jcb.128.6.1209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Hotchin N. A., Kovach N. L., Watt F. M. Functional down-regulation of alpha 5 beta 1 integrin in keratinocytes is reversible but commitment to terminal differentiation is not. J Cell Sci. 1993 Dec;106(Pt 4):1131–1138. doi: 10.1242/jcs.106.4.1131. [DOI] [PubMed] [Google Scholar]
  33. Ishida-Yamamoto A., Iizuka H., Manabe M., O'Guin W. M., Hohl D., Kartasova T., Kuroki T., Roop D. R., Eady R. A. Altered distribution of keratinization markers in epidermolytic hyperkeratosis. Arch Dermatol Res. 1995;287(8):705–711. doi: 10.1007/BF01105793. [DOI] [PubMed] [Google Scholar]
  34. Jensen P. K., Bolund L. Low Ca2+ stripping of differentiating cell layers in human epidermal cultures: an in vitro model of epidermal regeneration. Exp Cell Res. 1988 Mar;175(1):63–73. doi: 10.1016/0014-4827(88)90255-8. [DOI] [PubMed] [Google Scholar]
  35. Kadonaga J. T., Carner K. R., Masiarz F. R., Tjian R. Isolation of cDNA encoding transcription factor Sp1 and functional analysis of the DNA binding domain. Cell. 1987 Dec 24;51(6):1079–1090. doi: 10.1016/0092-8674(87)90594-0. [DOI] [PubMed] [Google Scholar]
  36. Kartasova T., van Muijen G. N., van Pelt-Heerschap H., van de Putte P. Novel protein in human epidermal keratinocytes: regulation of expression during differentiation. Mol Cell Biol. 1988 May;8(5):2204–2210. doi: 10.1128/mcb.8.5.2204. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Kartasova T., van de Putte P. Isolation, characterization, and UV-stimulated expression of two families of genes encoding polypeptides of related structure in human epidermal keratinocytes. Mol Cell Biol. 1988 May;8(5):2195–2203. doi: 10.1128/mcb.8.5.2195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Koller B. H., Orr H. T. Cloning and complete sequence of an HLA-A2 gene: analysis of two HLA-A alleles at the nucleotide level. J Immunol. 1985 Apr;134(4):2727–2733. [PubMed] [Google Scholar]
  39. Kunkel T. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc Natl Acad Sci U S A. 1985 Jan;82(2):488–492. doi: 10.1073/pnas.82.2.488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Lee J. H., Jang S. I., Yang J. M., Markova N. G., Steinert P. M. The proximal promoter of the human transglutaminase 3 gene. Stratified squamous epithelial-specific expression in cultured cells is mediated by binding of Sp1 and ets transcription factors to a proximal promoter element. J Biol Chem. 1996 Feb 23;271(8):4561–4568. [PubMed] [Google Scholar]
  41. Martin M. E., Piette J., Yaniv M., Tang W. J., Folk W. R. Activation of the polyomavirus enhancer by a murine activator protein 1 (AP1) homolog and two contiguous proteins. Proc Natl Acad Sci U S A. 1988 Aug;85(16):5839–5843. doi: 10.1073/pnas.85.16.5839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Marvin K. W., George M. D., Fujimoto W., Saunders N. A., Bernacki S. H., Jetten A. M. Cornifin, a cross-linked envelope precursor in keratinocytes that is down-regulated by retinoids. Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):11026–11030. doi: 10.1073/pnas.89.22.11026. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Matsuyama T., Kimura T., Kitagawa M., Pfeffer K., Kawakami T., Watanabe N., Kündig T. M., Amakawa R., Kishihara K., Wakeham A. Targeted disruption of IRF-1 or IRF-2 results in abnormal type I IFN gene induction and aberrant lymphocyte development. Cell. 1993 Oct 8;75(1):83–97. [PubMed] [Google Scholar]
  44. Pellegrini S., Schindler C. Early events in signalling by interferons. Trends Biochem Sci. 1993 Sep;18(9):338–342. doi: 10.1016/0968-0004(93)90070-4. [DOI] [PubMed] [Google Scholar]
  45. Ponec M., Kempenaar J. A., De Kloet E. R. Corticoids and cultured human epidermal keratinocytes: specific intracellular binding and clinical efficacy. J Invest Dermatol. 1981 Mar;76(3):211–214. doi: 10.1111/1523-1747.ep12525761. [DOI] [PubMed] [Google Scholar]
  46. Read J., Watt F. M. A model for in vitro studies of epidermal homeostasis: proliferation and involucrin synthesis by cultured human keratinocytes during recovery after stripping off the suprabasal layers. J Invest Dermatol. 1988 May;90(5):739–743. doi: 10.1111/1523-1747.ep12560940. [DOI] [PubMed] [Google Scholar]
  47. Rheinwald J. G., Green H. Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell. 1975 Nov;6(3):331–343. doi: 10.1016/s0092-8674(75)80001-8. [DOI] [PubMed] [Google Scholar]
  48. Saffer J. D., Jackson S. P., Annarella M. B. Developmental expression of Sp1 in the mouse. Mol Cell Biol. 1991 Apr;11(4):2189–2199. doi: 10.1128/mcb.11.4.2189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Saunders N. A., Jetten A. M. Control of growth regulatory and differentiation-specific genes in human epidermal keratinocytes by interferon gamma. Antagonism by retinoic acid and transforming growth factor beta 1. J Biol Chem. 1994 Jan 21;269(3):2016–2022. [PubMed] [Google Scholar]
  50. Saunders N. A., Smith R. J., Jetten A. M. Regulation of proliferation-specific and differentiation-specific genes during senescence of human epidermal keratinocyte and mammary epithelial cells. Biochem Biophys Res Commun. 1993 Nov 30;197(1):46–54. doi: 10.1006/bbrc.1993.2439. [DOI] [PubMed] [Google Scholar]
  51. Schreiber E., Matthias P., Müller M. M., Schaffner W. Rapid detection of octamer binding proteins with 'mini-extracts', prepared from a small number of cells. Nucleic Acids Res. 1989 Aug 11;17(15):6419–6419. doi: 10.1093/nar/17.15.6419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Schäfer B. W., Wicki R., Engelkamp D., Mattei M. G., Heizmann C. W. Isolation of a YAC clone covering a cluster of nine S100 genes on human chromosome 1q21: rationale for a new nomenclature of the S100 calcium-binding protein family. Genomics. 1995 Feb 10;25(3):638–643. doi: 10.1016/0888-7543(95)80005-7. [DOI] [PubMed] [Google Scholar]
  53. Steinert P. M., Marekov L. N. The proteins elafin, filaggrin, keratin intermediate filaments, loricrin, and small proline-rich proteins 1 and 2 are isodipeptide cross-linked components of the human epidermal cornified cell envelope. J Biol Chem. 1995 Jul 28;270(30):17702–17711. doi: 10.1074/jbc.270.30.17702. [DOI] [PubMed] [Google Scholar]
  54. Tamura T., Ishihara M., Lamphier M. S., Tanaka N., Oishi I., Aizawa S., Matsuyama T., Mak T. W., Taki S., Taniguchi T. An IRF-1-dependent pathway of DNA damage-induced apoptosis in mitogen-activated T lymphocytes. Nature. 1995 Aug 17;376(6541):596–599. doi: 10.1038/376596a0. [DOI] [PubMed] [Google Scholar]
  55. Tanaka N., Ishihara M., Kitagawa M., Harada H., Kimura T., Matsuyama T., Lamphier M. S., Aizawa S., Mak T. W., Taniguchi T. Cellular commitment to oncogene-induced transformation or apoptosis is dependent on the transcription factor IRF-1. Cell. 1994 Jun 17;77(6):829–839. doi: 10.1016/0092-8674(94)90132-5. [DOI] [PubMed] [Google Scholar]
  56. Tanaka N., Taniguchi T. Cytokine gene regulation: regulatory cis-elements and DNA binding factors involved in the interferon system. Adv Immunol. 1992;52:263–281. doi: 10.1016/s0065-2776(08)60877-9. [DOI] [PubMed] [Google Scholar]
  57. Volz A., Korge B. P., Compton J. G., Ziegler A., Steinert P. M., Mischke D. Physical mapping of a functional cluster of epidermal differentiation genes on chromosome 1q21. Genomics. 1993 Oct;18(1):92–99. doi: 10.1006/geno.1993.1430. [DOI] [PubMed] [Google Scholar]
  58. Waskiewicz A. J., Cooper J. A. Mitogen and stress response pathways: MAP kinase cascades and phosphatase regulation in mammals and yeast. Curr Opin Cell Biol. 1995 Dec;7(6):798–805. doi: 10.1016/0955-0674(95)80063-8. [DOI] [PubMed] [Google Scholar]
  59. Wasylyk B., Hahn S. L., Giovane A. The Ets family of transcription factors. Eur J Biochem. 1993 Jan 15;211(1-2):7–18. doi: 10.1007/978-3-642-78757-7_2. [DOI] [PubMed] [Google Scholar]
  60. Watt F. M., Mattey D. L., Garrod D. R. Calcium-induced reorganization of desmosomal components in cultured human keratinocytes. J Cell Biol. 1984 Dec;99(6):2211–2215. doi: 10.1083/jcb.99.6.2211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Westin G., Schaffner W. Heavy metal ions in transcription factors from HeLa cells: Sp1, but not octamer transcription factor requires zinc for DNA binding and for activator function. Nucleic Acids Res. 1988 Jul 11;16(13):5771–5781. doi: 10.1093/nar/16.13.5771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Wirth T., Staudt L., Baltimore D. An octamer oligonucleotide upstream of a TATA motif is sufficient for lymphoid-specific promoter activity. Nature. 1987 Sep 10;329(6135):174–178. doi: 10.1038/329174a0. [DOI] [PubMed] [Google Scholar]
  63. Wu R. L., Chen T. T., Sun T. T. Functional importance of an Sp1- and an NFkB-related nuclear protein in a keratinocyte-specific promoter of rabbit K3 keratin gene. J Biol Chem. 1994 Nov 11;269(45):28450–28459. [PubMed] [Google Scholar]
  64. Yaar M., Eller M. S., Bhawan J., Harkness D. D., DiBenedetto P. J., Gilchrest B. A. In vivo and in vitro SPRR1 gene expression in normal and malignant keratinocytes. Exp Cell Res. 1995 Apr;217(2):217–226. doi: 10.1006/excr.1995.1081. [DOI] [PubMed] [Google Scholar]
  65. Yaar M., Karassik R. L., Schnipper L. E., Gilchrest B. A. Effects of alpha and beta interferons on cultured human keratinocytes. J Invest Dermatol. 1985 Jul;85(1):70–74. doi: 10.1111/1523-1747.ep12275353. [DOI] [PubMed] [Google Scholar]
  66. Yukawa K., Butz K., Yasui T., Kikutani H., Hoppe-Seyler F. Regulation of human papillomavirus transcription by the differentiation-dependent epithelial factor Epoc-1/skn-1a. J Virol. 1996 Jan;70(1):10–16. doi: 10.1128/jvi.70.1.10-16.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES