Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1996 Oct;16(10):5655–5663. doi: 10.1128/mcb.16.10.5655

Selection against the dihydrofolate reductase-thymidylate synthase (DHFR-TS) locus as a probe of genetic alterations in Leishmania major.

F J Gueiros-Filho 1, S M Beverley 1
PMCID: PMC231565  PMID: 8816478

Abstract

The genome of the trypanosomatid protozoan genus Leishmania has been shown to undergo a number of changes relevant to drug resistance and virulence, such as gene amplification, chromosomal rearrangement, and variation in ploidy. Experimental approaches to the study of genomic changes have in some cases been limited by the fact that Leishmania cells are asexual diploids, as are some other trypanosomatids, pathogenic fungi, and cultured mammalian cells. Here we report upon a system which permits the measurement of several types of genomic change occurring at the dihydrofolate reductase-thymidylate synthase (DHFR-TS) locus. First, we show that DHFR-TS can function as a positive/negative marker. We used selection against DHFR-TS on a heterozygous line (+/HYG) to generate colonies exhibiting both loss of heterozygosity and structural mutations in DHFR-TS, permitting the first measurement of mutation frequencies in this parasite. Loss of heterozygosity occurred at a frequency ranging from 10(-4) to 10(-6) and was elevated 24-fold by treatment with gamma-irradiation, while the frequency of other events was less than 10(-6) and was increased more than 1,000-fold by nitrosoguanidine treatment. The frequency of loss of heterozygosity relative to other processes such as mutation and gene replacement has important implications for genetic variability in natural Leishmania populations and the generation of both targeted and random mutations. We also developed a protocol for null targeting of diploid cells, in which transfection of a DHFR-TS deletion construct into Leishmania cells followed by negative selection yielded parasites lacking DHFR-TS or foreign sequences. The null-targeting method can be applied to any diploid cell, at any locus for which a negative selection exists. Such marker-free auxotrophic Leishmania cells show potential as an attenuated vaccine, and the methods developed here provide a new approach for manipulating and characterizing the plasticity of the Leishmania genome.

Full Text

The Full Text of this article is available as a PDF (408.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abuin A., Bradley A. Recycling selectable markers in mouse embryonic stem cells. Mol Cell Biol. 1996 Apr;16(4):1851–1856. doi: 10.1128/mcb.16.4.1851. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arrebola R., Olmo A., Reche P., Garvey E. P., Santi D. V., Ruiz-Perez L. M., Gonzalez-Pacanowska D. Isolation and characterization of a mutant dihydrofolate reductase-thymidylate synthase from methotrexate-resistant Leishmania cells. J Biol Chem. 1994 Apr 8;269(14):10590–10596. [PubMed] [Google Scholar]
  3. Ayusawa D., Koyama H., Iwata K., Seno T. Selection of mammalian thymidine auxotrophic cell mutants defective in thymidylate synthase by their reduced sensitivity to methotrexate. Somatic Cell Genet. 1981 Sep;7(5):523–534. doi: 10.1007/BF01549656. [DOI] [PubMed] [Google Scholar]
  4. Bastien P., Blaineau C., Pagès M. Molecular karyotype analysis in Leishmania. Subcell Biochem. 1992;18:131–187. doi: 10.1007/978-1-4899-1651-8_5. [DOI] [PubMed] [Google Scholar]
  5. Bello A. R., Nare B., Freedman D., Hardy L., Beverley S. M. PTR1: a reductase mediating salvage of oxidized pteridines and methotrexate resistance in the protozoan parasite Leishmania major. Proc Natl Acad Sci U S A. 1994 Nov 22;91(24):11442–11446. doi: 10.1073/pnas.91.24.11442. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bertino J. B., Stacey K. A. A suggested mechanism for the selective procedure for isolating thymine-requiring mutants of Escherichia coli. Biochem J. 1966 Nov;101(2):32C–33C. doi: 10.1042/bj1010032c. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Beverley S. M., Ellenberger T. E., Cordingley J. S. Primary structure of the gene encoding the bifunctional dihydrofolate reductase-thymidylate synthase of Leishmania major. Proc Natl Acad Sci U S A. 1986 Apr;83(8):2584–2588. doi: 10.1073/pnas.83.8.2584. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Beverley S. M. Gene amplification in Leishmania. Annu Rev Microbiol. 1991;45:417–444. doi: 10.1146/annurev.mi.45.100191.002221. [DOI] [PubMed] [Google Scholar]
  9. Borst P., Ouellette M. New mechanisms of drug resistance in parasitic protozoa. Annu Rev Microbiol. 1995;49:427–460. doi: 10.1146/annurev.mi.49.100195.002235. [DOI] [PubMed] [Google Scholar]
  10. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  11. Brendel M., Fäth W. W. Isolation and characterization of mutants of Saccharomyces cerevisiae auxotrophic and conditionally auxotrophic for 5'-dTMP. Z Naturforsch C. 1974 Nov-Dec;29(11-12):733–738. doi: 10.1515/znc-1974-11-1214. [DOI] [PubMed] [Google Scholar]
  12. Bronson S. K., Smithies O. Altering mice by homologous recombination using embryonic stem cells. J Biol Chem. 1994 Nov 4;269(44):27155–27158. [PubMed] [Google Scholar]
  13. Buchmeier N. A., Libby S. J., Xu Y., Loewen P. C., Switala J., Guiney D. G., Fang F. C. DNA repair is more important than catalase for Salmonella virulence in mice. J Clin Invest. 1995 Mar;95(3):1047–1053. doi: 10.1172/JCI117750. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Callahan H. L., Beverley S. M. A member of the aldoketo reductase family confers methotrexate resistance in Leishmania. J Biol Chem. 1992 Dec 5;267(34):24165–24168. [PubMed] [Google Scholar]
  15. Campbell C. E., Worton R. G. Segregation of recessive phenotypes in somatic cell hybrids: role of mitotic recombination, gene inactivation, and chromosome nondisjunction. Mol Cell Biol. 1981 Apr;1(4):336–346. doi: 10.1128/mcb.1.4.336. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Climie S., Ruiz-Perez L., Gonzalez-Pacanowska D., Prapunwattana P., Cho S. W., Stroud R., Santi D. V. Saturation site-directed mutagenesis of thymidylate synthase. J Biol Chem. 1990 Nov 5;265(31):18776–18779. [PubMed] [Google Scholar]
  17. Coderre J. A., Beverley S. M., Schimke R. T., Santi D. V. Overproduction of a bifunctional thymidylate synthetase-dihydrofolate reductase and DNA amplification in methotrexate-resistant Leishmania tropica. Proc Natl Acad Sci U S A. 1983 Apr;80(8):2132–2136. doi: 10.1073/pnas.80.8.2132. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Cruz A. K., Titus R., Beverley S. M. Plasticity in chromosome number and testing of essential genes in Leishmania by targeting. Proc Natl Acad Sci U S A. 1993 Feb 15;90(4):1599–1603. doi: 10.1073/pnas.90.4.1599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Cruz A., Beverley S. M. Gene replacement in parasitic protozoa. Nature. 1990 Nov 8;348(6297):171–173. doi: 10.1038/348171a0. [DOI] [PubMed] [Google Scholar]
  20. Cruz A., Coburn C. M., Beverley S. M. Double targeted gene replacement for creating null mutants. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7170–7174. doi: 10.1073/pnas.88.16.7170. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Descoteaux A., Luo Y., Turco S. J., Beverley S. M. A specialized pathway affecting virulence glycoconjugates of Leishmania. Science. 1995 Sep 29;269(5232):1869–1872. doi: 10.1126/science.7569927. [DOI] [PubMed] [Google Scholar]
  22. Elhay M., Kelleher M., Bacic A., McConville M. J., Tolson D. L., Pearson T. W., Handman E. Lipophosphoglycan expression and virulence in ricin-resistant variants of Leishmania major. Mol Biochem Parasitol. 1990 May;40(2):255–267. doi: 10.1016/0166-6851(90)90047-p. [DOI] [PubMed] [Google Scholar]
  23. Ellenberger T. E., Beverley S. M. Biochemistry and regulation of folate and methotrexate transport in Leishmania major. J Biol Chem. 1987 Jul 25;262(21):10053–10058. [PubMed] [Google Scholar]
  24. Ellenberger T. E., Beverley S. M. Multiple drug resistance and conservative amplification of the H region in Leishmania major. J Biol Chem. 1989 Sep 5;264(25):15094–15103. [PubMed] [Google Scholar]
  25. Ellenberger T. E., Beverley S. M. Reductions in methotrexate and folate influx in methotrexate-resistant lines of Leishmania major are independent of R or H region amplification. J Biol Chem. 1987 Oct 5;262(28):13501–13506. [PubMed] [Google Scholar]
  26. Esposito M. S., Bruschi C. V. Diploid yeast cells yield homozygous spontaneous mutations. Curr Genet. 1993 May-Jun;23(5-6):430–434. doi: 10.1007/BF00312630. [DOI] [PubMed] [Google Scholar]
  27. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  28. Gorman J. A., Chan W., Gorman J. W. Repeated use of GAL1 for gene disruption in Candida albicans. Genetics. 1991 Sep;129(1):19–24. doi: 10.1093/genetics/129.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Gueiros-Filho F. J., Beverley S. M. On the introduction of genetically modified Leishmania outside the laboratory. Exp Parasitol. 1994 Jun;78(4):425–428. doi: 10.1006/expr.1994.1048. [DOI] [PubMed] [Google Scholar]
  30. Hasty P., Ramírez-Solis R., Krumlauf R., Bradley A. Introduction of a subtle mutation into the Hox-2.6 locus in embryonic stem cells. Nature. 1991 Mar 21;350(6315):243–246. doi: 10.1038/350243a0. [DOI] [PubMed] [Google Scholar]
  31. Hayman R., McGready R., Van der Weyden M. B. A rapid radiometric assay for dihydrofolate reductase. Anal Biochem. 1978 Jul 1;87(2):460–465. doi: 10.1016/0003-2697(78)90696-6. [DOI] [PubMed] [Google Scholar]
  32. Iovannisci D. M., Goebel D., Allen K., Kaur K., Ullman B. Genetic analysis of adenine metabolism in Leishmania donovani promastigotes. Evidence for diploidy at the adenine phosphoribosyltransferase locus. J Biol Chem. 1984 Dec 10;259(23):14617–14623. [PubMed] [Google Scholar]
  33. Kapler G. M., Coburn C. M., Beverley S. M. Stable transfection of the human parasite Leishmania major delineates a 30-kilobase region sufficient for extrachromosomal replication and expression. Mol Cell Biol. 1990 Mar;10(3):1084–1094. doi: 10.1128/mcb.10.3.1084. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Kaur K., Coons T., Emmett K., Ullman B. Methotrexate-resistant Leishmania donovani genetically deficient in the folate-methotrexate transporter. J Biol Chem. 1988 May 25;263(15):7020–7028. [PubMed] [Google Scholar]
  35. King D. L., Turco S. J. A ricin agglutinin-resistant clone of Leishmania donovani deficient in lipophosphoglycan. Mol Biochem Parasitol. 1988 Apr;28(3):285–293. doi: 10.1016/0166-6851(88)90013-8. [DOI] [PubMed] [Google Scholar]
  36. Knighton D. R., Kan C. C., Howland E., Janson C. A., Hostomska Z., Welsh K. M., Matthews D. A. Structure of and kinetic channelling in bifunctional dihydrofolate reductase-thymidylate synthase. Nat Struct Biol. 1994 Mar;1(3):186–194. doi: 10.1038/nsb0394-186. [DOI] [PubMed] [Google Scholar]
  37. Lazar G., Zhang H., Goodman H. M. The origin of the bifunctional dihydrofolate reductase-thymidylate synthase isogenes of Arabidopsis thaliana. Plant J. 1993 May;3(5):657–668. doi: 10.1046/j.1365-313x.1993.03050657.x. [DOI] [PubMed] [Google Scholar]
  38. LeBowitz J. H., Cruz A., Beverley S. M. Thymidine kinase as a negative selectable marker in Leishmania major. Mol Biochem Parasitol. 1992 Apr;51(2):321–325. doi: 10.1016/0166-6851(92)90082-u. [DOI] [PubMed] [Google Scholar]
  39. Lodes M. J., Merlin G., deVos T., Ghosh A., Madhubala R., Myler P. J., Stuart K. Increased expression of LD1 genes transcribed by RNA polymerase I in Leishmania donovani as a result of duplication into the rRNA gene locus. Mol Cell Biol. 1995 Dec;15(12):6845–6853. doi: 10.1128/mcb.15.12.6845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Marchand M., Daoud S., Titus R. G., Louis J., Boon T. Variants with reduced virulence derived from Leishmania major after mutagen treatment. Parasite Immunol. 1987 Jan;9(1):81–92. doi: 10.1111/j.1365-3024.1987.tb00490.x. [DOI] [PubMed] [Google Scholar]
  41. Medina-Acosta E., Cross G. A. Rapid isolation of DNA from trypanosomatid protozoa using a simple 'mini-prep' procedure. Mol Biochem Parasitol. 1993 Jun;59(2):327–329. doi: 10.1016/0166-6851(93)90231-l. [DOI] [PubMed] [Google Scholar]
  42. Meek T. D., Garvey E. P., Santi D. V. Purification and characterization of the bifunctional thymidylate synthetase-dihydrofolate reductase from methotrexate-resistant Leishmania tropica. Biochemistry. 1985 Jan 29;24(3):678–686. doi: 10.1021/bi00324a021. [DOI] [PubMed] [Google Scholar]
  43. Mortensen R. M., Conner D. A., Chao S., Geisterfer-Lowrance A. A., Seidman J. G. Production of homozygous mutant ES cells with a single targeting construct. Mol Cell Biol. 1992 May;12(5):2391–2395. doi: 10.1128/mcb.12.5.2391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Ouellette M., Borst P. Drug resistance and P-glycoprotein gene amplification in the protozoan parasite Leishmania. Res Microbiol. 1991 Jul-Aug;142(6):737–746. doi: 10.1016/0923-2508(91)90089-s. [DOI] [PubMed] [Google Scholar]
  45. Panton L. J., Tesh R. B., Nadeau K. C., Beverley S. M. A test for genetic exchange in mixed infections of Leishmania major in the sand fly Phlebotomus papatasi. J Protozool. 1991 May-Jun;38(3):224–228. doi: 10.1111/j.1550-7408.1991.tb04433.x. [DOI] [PubMed] [Google Scholar]
  46. Papadopoulou B., Roy G., Mourad W., Leblanc E., Ouellette M. Changes in folate and pterin metabolism after disruption of the Leishmania H locus short chain dehydrogenase gene. J Biol Chem. 1994 Mar 11;269(10):7310–7315. [PubMed] [Google Scholar]
  47. Rajan T. V., Moffat L. F., Frankel W. N. Rate and mechanism of generation of beta 2-microglobulin mutants from a heterozygous murine cell line. J Immunol. 1990 Sep 1;145(5):1598–1602. [PubMed] [Google Scholar]
  48. Roberts D. An isotopic assay for thymidylate synthetase. Biochemistry. 1966 Nov;5(11):3546–3548. doi: 10.1021/bi00875a022. [DOI] [PubMed] [Google Scholar]
  49. Rovai L., Tripp C., Stuart K., Simpson L. Recurrent polymorphisms in small chromosomes of Leishmania tarentolae after nutrient stress or subcloning. Mol Biochem Parasitol. 1992 Jan;50(1):115–125. doi: 10.1016/0166-6851(92)90249-j. [DOI] [PubMed] [Google Scholar]
  50. Ryan K. A., Garraway L. A., Descoteaux A., Turco S. J., Beverley S. M. Isolation of virulence genes directing surface glycosyl-phosphatidylinositol synthesis by functional complementation of Leishmania. Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8609–8613. doi: 10.1073/pnas.90.18.8609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. STACEY K. A., SIMSON E. IMPROVED METHOD FOR THE ISOLATION OF THYMINE-REQUIRING MUTANTS OF ESCHERICHIA COLI. J Bacteriol. 1965 Aug;90:554–555. doi: 10.1128/jb.90.2.554-555.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Siminovitch L. On the nature of hereditable variation in cultured somatic cells. Cell. 1976 Jan;7(1):1–11. doi: 10.1016/0092-8674(76)90249-x. [DOI] [PubMed] [Google Scholar]
  53. Tibayrenc M., Kjellberg F., Ayala F. J. A clonal theory of parasitic protozoa: the population structures of Entamoeba, Giardia, Leishmania, Naegleria, Plasmodium, Trichomonas, and Trypanosoma and their medical and taxonomical consequences. Proc Natl Acad Sci U S A. 1990 Apr;87(7):2414–2418. doi: 10.1073/pnas.87.7.2414. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Titus R. G., Gueiros-Filho F. J., de Freitas L. A., Beverley S. M. Development of a safe live Leishmania vaccine line by gene replacement. Proc Natl Acad Sci U S A. 1995 Oct 24;92(22):10267–10271. doi: 10.1073/pnas.92.22.10267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Tripp C. A., Myler P. J., Stuart K. A DNA sequence (LD1) which occurs in several genomic organizations in Leishmania. Mol Biochem Parasitol. 1991 Aug;47(2):151–156. doi: 10.1016/0166-6851(91)90174-5. [DOI] [PubMed] [Google Scholar]
  56. Valdés J., Taylor M. C., Cross M. A., Ligtenberg M. J., Rudenko G., Borst P. The viral thymidine kinase gene as a tool for the study of mutagenesis in Trypanosoma brucei. Nucleic Acids Res. 1996 May 15;24(10):1809–1815. doi: 10.1093/nar/24.10.1809. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Wasmuth J. J., Vock Hall L. Genetic demonstration of mitotic recombination in cultured Chinese hamster cell hybrids. Cell. 1984 Mar;36(3):697–707. doi: 10.1016/0092-8674(84)90350-7. [DOI] [PubMed] [Google Scholar]
  58. Whelan W. L. The genetics of medically important fungi. Crit Rev Microbiol. 1987;14(2):99–170. doi: 10.3109/10408418709104437. [DOI] [PubMed] [Google Scholar]
  59. de Arruda M. V., Matsudaira P. Cloning and sequencing of the Leishmania major actin-encoding gene. Gene. 1994 Feb 11;139(1):123–125. doi: 10.1016/0378-1119(94)90534-7. [DOI] [PubMed] [Google Scholar]
  60. te Riele H., Maandag E. R., Clarke A., Hooper M., Berns A. Consecutive inactivation of both alleles of the pim-1 proto-oncogene by homologous recombination in embryonic stem cells. Nature. 1990 Dec 13;348(6302):649–651. doi: 10.1038/348649a0. [DOI] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES