Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1996 Oct;16(10):5915–5923. doi: 10.1128/mcb.16.10.5915

Voltage-insensitive Ca2+ channels and Ca2+/calmodulin-dependent protein kinases propagate signals from endothelin-1 receptors to the c-fos promoter.

Y Wang 1, M S Simonson 1
PMCID: PMC231593  PMID: 8816505

Abstract

Endothelin-1 (ET-1) triggers poorly understood nuclear signaling cascades that control gene expression, cell growth, and differentiation. To better understand how ET-1 regulates gene expression, we asked whether voltage-insensitive Ca2+ channels and Ca2+/calmodulin-dependent protein kinases (CaMKs) propagate signals from ET-1 receptors to the c-fos promoter in mesangial cells. Ca2+ influx through voltage-insensitive Ca2+ channels, one of the earliest postreceptor events in ET-1 signaling, mediated induction of c-fos mRNA and activation of the c-fos promoter by ET-1. A CaMK inhibitor (KN-93) blocked activation of the c-fos promoter by ET-1. Ectopic expression of CaMKII potentiated stimulation by ET-1, providing further evidence that CaMKs contribute to c-fos promoter activation by ET-1. The c-fos serum response element was necessary but not sufficient for CaMKII to activate the c-fos promoter. Activation of the c-fos promoter by ET-1 and CaMKII also required the FAP cis element, an AP-1-like sequence adjacent to the serum response element. Thus, voltage-insensitive Ca2+ channels and CaMKs apparently propagate ET-1 signals to the c-fos promoter that require multiple, interdependent cis elements. Moreover, these experiments suggest an important role for voltage-insensitive Ca2+ channels in nuclear signal transduction in nonexcitable cells.

Full Text

The Full Text of this article is available as a PDF (354.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bading H., Ginty D. D., Greenberg M. E. Regulation of gene expression in hippocampal neurons by distinct calcium signaling pathways. Science. 1993 Apr 9;260(5105):181–186. doi: 10.1126/science.8097060. [DOI] [PubMed] [Google Scholar]
  2. Baynash A. G., Hosoda K., Giaid A., Richardson J. A., Emoto N., Hammer R. E., Yanagisawa M. Interaction of endothelin-3 with endothelin-B receptor is essential for development of epidermal melanocytes and enteric neurons. Cell. 1994 Dec 30;79(7):1277–1285. doi: 10.1016/0092-8674(94)90018-3. [DOI] [PubMed] [Google Scholar]
  3. Benigni A., Zoja C., Corna D., Orisio S., Longaretti L., Bertani T., Remuzzi G. A specific endothelin subtype A receptor antagonist protects against injury in renal disease progression. Kidney Int. 1993 Aug;44(2):440–444. doi: 10.1038/ki.1993.263. [DOI] [PubMed] [Google Scholar]
  4. Berkowitz L. A., Riabowol K. T., Gilman M. Z. Multiple sequence elements of a single functional class are required for cyclic AMP responsiveness of the mouse c-fos promoter. Mol Cell Biol. 1989 Oct;9(10):4272–4281. doi: 10.1128/mcb.9.10.4272. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chant J., Stowers L. GTPase cascades choreographing cellular behavior: movement, morphogenesis, and more. Cell. 1995 Apr 7;81(1):1–4. doi: 10.1016/0092-8674(95)90363-1. [DOI] [PubMed] [Google Scholar]
  6. Curran T., Gordon M. B., Rubino K. L., Sambucetti L. C. Isolation and characterization of the c-fos(rat) cDNA and analysis of post-translational modification in vitro. Oncogene. 1987;2(1):79–84. [PubMed] [Google Scholar]
  7. Douglas S. A., Louden C., Vickery-Clark L. M., Storer B. L., Hart T., Feuerstein G. Z., Elliott J. D., Ohlstein E. H. A role for endogenous endothelin-1 in neointimal formation after rat carotid artery balloon angioplasty. Protective effects of the novel nonpeptide endothelin receptor antagonist SB 209670. Circ Res. 1994 Jul;75(1):190–197. doi: 10.1161/01.res.75.1.190. [DOI] [PubMed] [Google Scholar]
  8. Fisch T. M., Prywes R., Roeder R. G. c-fos sequence necessary for basal expression and induction by epidermal growth factor, 12-O-tetradecanoyl phorbol-13-acetate and the calcium ionophore. Mol Cell Biol. 1987 Oct;7(10):3490–3502. doi: 10.1128/mcb.7.10.3490. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fisch T. M., Prywes R., Simon M. C., Roeder R. G. Multiple sequence elements in the c-fos promoter mediate induction by cAMP. Genes Dev. 1989 Feb;3(2):198–211. doi: 10.1101/gad.3.2.198. [DOI] [PubMed] [Google Scholar]
  10. Ghosh A., Greenberg M. E. Calcium signaling in neurons: molecular mechanisms and cellular consequences. Science. 1995 Apr 14;268(5208):239–247. doi: 10.1126/science.7716515. [DOI] [PubMed] [Google Scholar]
  11. Giaid A., Yanagisawa M., Langleben D., Michel R. P., Levy R., Shennib H., Kimura S., Masaki T., Duguid W. P., Stewart D. J. Expression of endothelin-1 in the lungs of patients with pulmonary hypertension. N Engl J Med. 1993 Jun 17;328(24):1732–1739. doi: 10.1056/NEJM199306173282402. [DOI] [PubMed] [Google Scholar]
  12. Gilman M. Z. The c-fos serum response element responds to protein kinase C-dependent and -independent signals but not to cyclic AMP. Genes Dev. 1988 Apr;2(4):394–402. doi: 10.1101/gad.2.4.394. [DOI] [PubMed] [Google Scholar]
  13. Gilman M. Z., Wilson R. N., Weinberg R. A. Multiple protein-binding sites in the 5'-flanking region regulate c-fos expression. Mol Cell Biol. 1986 Dec;6(12):4305–4316. doi: 10.1128/mcb.6.12.4305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Goto K., Kasuya Y., Matsuki N., Takuwa Y., Kurihara H., Ishikawa T., Kimura S., Yanagisawa M., Masaki T. Endothelin activates the dihydropyridine-sensitive, voltage-dependent Ca2+ channel in vascular smooth muscle. Proc Natl Acad Sci U S A. 1989 May;86(10):3915–3918. doi: 10.1073/pnas.86.10.3915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Graham R., Gilman M. Distinct protein targets for signals acting at the c-fos serum response element. Science. 1991 Jan 11;251(4990):189–192. doi: 10.1126/science.1898992. [DOI] [PubMed] [Google Scholar]
  16. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  17. Herman W. H., Simonson M. S. Nuclear signaling by endothelin-1. A Ras pathway for activation of the c-fos serum response element. J Biol Chem. 1995 May 12;270(19):11654–11661. doi: 10.1074/jbc.270.19.11654. [DOI] [PubMed] [Google Scholar]
  18. Hill C. S., Treisman R. Differential activation of c-fos promoter elements by serum, lysophosphatidic acid, G proteins and polypeptide growth factors. EMBO J. 1995 Oct 16;14(20):5037–5047. doi: 10.1002/j.1460-2075.1995.tb00186.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hill C. S., Wynne J., Treisman R. Serum-regulated transcription by serum response factor (SRF): a novel role for the DNA binding domain. EMBO J. 1994 Nov 15;13(22):5421–5432. doi: 10.1002/j.1460-2075.1994.tb06877.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hill C. S., Wynne J., Treisman R. The Rho family GTPases RhoA, Rac1, and CDC42Hs regulate transcriptional activation by SRF. Cell. 1995 Jun 30;81(7):1159–1170. doi: 10.1016/s0092-8674(05)80020-0. [DOI] [PubMed] [Google Scholar]
  21. Hosoda K., Hammer R. E., Richardson J. A., Baynash A. G., Cheung J. C., Giaid A., Yanagisawa M. Targeted and natural (piebald-lethal) mutations of endothelin-B receptor gene produce megacolon associated with spotted coat color in mice. Cell. 1994 Dec 30;79(7):1267–1276. doi: 10.1016/0092-8674(94)90017-5. [DOI] [PubMed] [Google Scholar]
  22. Huang S., Simonson M. S., Dunn M. J. Manidipine inhibits endothelin-1-induced [Ca2+]i signaling but potentiates endothelin's effect on c-fos and c-jun induction in vascular smooth muscle and glomerular mesangial cells. Am Heart J. 1993 Feb;125(2 Pt 2):589–597. doi: 10.1016/0002-8703(93)90208-q. [DOI] [PubMed] [Google Scholar]
  23. Khosravi-Far R., Solski P. A., Clark G. J., Kinch M. S., Der C. J. Activation of Rac1, RhoA, and mitogen-activated protein kinases is required for Ras transformation. Mol Cell Biol. 1995 Nov;15(11):6443–6453. doi: 10.1128/mcb.15.11.6443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kurihara Y., Kurihara H., Oda H., Maemura K., Nagai R., Ishikawa T., Yazaki Y. Aortic arch malformations and ventricular septal defect in mice deficient in endothelin-1. J Clin Invest. 1995 Jul;96(1):293–300. doi: 10.1172/JCI118033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kurihara Y., Kurihara H., Suzuki H., Kodama T., Maemura K., Nagai R., Oda H., Kuwaki T., Cao W. H., Kamada N. Elevated blood pressure and craniofacial abnormalities in mice deficient in endothelin-1. Nature. 1994 Apr 21;368(6473):703–710. doi: 10.1038/368703a0. [DOI] [PubMed] [Google Scholar]
  26. Lee G., Gilman M. Dual modes of control of c-fos mRNA induction by intracellular calcium in T cells. Mol Cell Biol. 1994 Jul;14(7):4579–4587. doi: 10.1128/mcb.14.7.4579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Lerman A., Edwards B. S., Hallett J. W., Heublein D. M., Sandberg S. M., Burnett J. C., Jr Circulating and tissue endothelin immunoreactivity in advanced atherosclerosis. N Engl J Med. 1991 Oct 3;325(14):997–1001. doi: 10.1056/NEJM199110033251404. [DOI] [PubMed] [Google Scholar]
  28. Levin E. R. Endothelins. N Engl J Med. 1995 Aug 10;333(6):356–363. doi: 10.1056/NEJM199508103330607. [DOI] [PubMed] [Google Scholar]
  29. Mamiya N., Goldenring J. R., Tsunoda Y., Modlin I. M., Yasui K., Usuda N., Ishikawa T., Natsume A., Hidaka H. Inhibition of acid secretion in gastric parietal cells by the Ca2+/calmodulin-dependent protein kinase II inhibitor KN-93. Biochem Biophys Res Commun. 1993 Sep 15;195(2):608–615. doi: 10.1006/bbrc.1993.2089. [DOI] [PubMed] [Google Scholar]
  30. Masaki T. Endothelins: homeostatic and compensatory actions in the circulatory and endocrine systems. Endocr Rev. 1993 Jun;14(3):256–268. doi: 10.1210/edrv-14-3-256. [DOI] [PubMed] [Google Scholar]
  31. Matthews R. P., Guthrie C. R., Wailes L. M., Zhao X., Means A. R., McKnight G. S. Calcium/calmodulin-dependent protein kinase types II and IV differentially regulate CREB-dependent gene expression. Mol Cell Biol. 1994 Sep;14(9):6107–6116. doi: 10.1128/mcb.14.9.6107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Merritt J. E., Armstrong W. P., Benham C. D., Hallam T. J., Jacob R., Jaxa-Chamiec A., Leigh B. K., McCarthy S. A., Moores K. E., Rink T. J. SK&F 96365, a novel inhibitor of receptor-mediated calcium entry. Biochem J. 1990 Oct 15;271(2):515–522. doi: 10.1042/bj2710515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Miranti C. K., Ginty D. D., Huang G., Chatila T., Greenberg M. E. Calcium activates serum response factor-dependent transcription by a Ras- and Elk-1-independent mechanism that involves a Ca2+/calmodulin-dependent kinase. Mol Cell Biol. 1995 Jul;15(7):3672–3684. doi: 10.1128/mcb.15.7.3672. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Muldoon L. L., Pribnow D., Rodland K. D., Magun B. E. Endothelin-1 stimulates DNA synthesis and anchorage-independent growth of Rat-1 fibroblasts through a protein kinase C-dependent mechanism. Cell Regul. 1990 Mar;1(4):379–390. doi: 10.1091/mbc.1.4.379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Naitoh T., Toyo-Oka T., Sugimoto T. An endogenous Ca2+ channel agonist, endothelin-1, does not directly activate partially purified dihydropyridine-sensitive Ca2+ channel from cardiac muscle in a reconstituted system. Biochem Biophys Res Commun. 1990 Sep 28;171(3):1205–1210. doi: 10.1016/0006-291x(90)90813-3. [DOI] [PubMed] [Google Scholar]
  36. Olson M. F., Ashworth A., Hall A. An essential role for Rho, Rac, and Cdc42 GTPases in cell cycle progression through G1. Science. 1995 Sep 1;269(5228):1270–1272. doi: 10.1126/science.7652575. [DOI] [PubMed] [Google Scholar]
  37. Pribnow D., Muldoon L. L., Fajardo M., Theodor L., Chen L. Y., Magun B. E. Endothelin induces transcription of fos/jun family genes: a prominent role for calcium ion. Mol Endocrinol. 1992 Jul;6(7):1003–1012. doi: 10.1210/mend.6.7.1508217. [DOI] [PubMed] [Google Scholar]
  38. Robertson L. M., Kerppola T. K., Vendrell M., Luk D., Smeyne R. J., Bocchiaro C., Morgan J. I., Curran T. Regulation of c-fos expression in transgenic mice requires multiple interdependent transcription control elements. Neuron. 1995 Feb;14(2):241–252. doi: 10.1016/0896-6273(95)90282-1. [DOI] [PubMed] [Google Scholar]
  39. Rosen L. B., Ginty D. D., Weber M. J., Greenberg M. E. Membrane depolarization and calcium influx stimulate MEK and MAP kinase via activation of Ras. Neuron. 1994 Jun;12(6):1207–1221. doi: 10.1016/0896-6273(94)90438-3. [DOI] [PubMed] [Google Scholar]
  40. Santoro I. M., Walsh K. Natural and synthetic DNA elements with the CArG motif differ in expression and protein-binding properties. Mol Cell Biol. 1991 Dec;11(12):6296–6305. doi: 10.1128/mcb.11.12.6296. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Sheng M., McFadden G., Greenberg M. E. Membrane depolarization and calcium induce c-fos transcription via phosphorylation of transcription factor CREB. Neuron. 1990 Apr;4(4):571–582. doi: 10.1016/0896-6273(90)90115-v. [DOI] [PubMed] [Google Scholar]
  42. Simonson M. S., Dunn M. J. Ca2+ signaling by distinct endothelin peptides in glomerular mesangial cells. Exp Cell Res. 1991 Jan;192(1):148–156. doi: 10.1016/0014-4827(91)90169-u. [DOI] [PubMed] [Google Scholar]
  43. Simonson M. S., Dunn M. J. Cellular signaling by peptides of the endothelin gene family. FASEB J. 1990 Sep;4(12):2989–3000. doi: 10.1096/fasebj.4.12.2168326. [DOI] [PubMed] [Google Scholar]
  44. Simonson M. S., Dunn M. J. Eicosanoid biochemistry in cultured glomerular mesangial cells. Methods Enzymol. 1990;187:544–553. doi: 10.1016/0076-6879(90)87061-7. [DOI] [PubMed] [Google Scholar]
  45. Simonson M. S. Endothelin peptides and compensatory growth of renal cells. Curr Opin Nephrol Hypertens. 1994 Jan;3(1):73–85. doi: 10.1097/00041552-199401000-00011. [DOI] [PubMed] [Google Scholar]
  46. Simonson M. S. Endothelins: multifunctional renal peptides. Physiol Rev. 1993 Apr;73(2):375–411. doi: 10.1152/physrev.1993.73.2.375. [DOI] [PubMed] [Google Scholar]
  47. Simonson M. S., Herman W. H. Protein kinase C and protein tyrosine kinase activity contribute to mitogenic signaling by endothelin-1. Cross-talk between G protein-coupled receptors and pp60c-src. J Biol Chem. 1993 May 5;268(13):9347–9357. [PubMed] [Google Scholar]
  48. Simonson M. S., Rooney A. Characterization of endothelin receptors in mesangial cells: evidence for two functionally distinct endothelin binding sites. Mol Pharmacol. 1994 Jul;46(1):41–50. [PubMed] [Google Scholar]
  49. Simonson M. S., Wang Y., Herman W. H. Ca2+ channels mediate protein tyrosine kinase activation by endothelin-1. Am J Physiol. 1996 May;270(5 Pt 2):F790–F797. doi: 10.1152/ajprenal.1996.270.5.F790. [DOI] [PubMed] [Google Scholar]
  50. Simonson M. S., Wang Y., Herman W. H. Nuclear signaling by endothelin-1 requires Src protein-tyrosine kinases. J Biol Chem. 1996 Jan 5;271(1):77–82. doi: 10.1074/jbc.271.1.77. [DOI] [PubMed] [Google Scholar]
  51. Simonson M. S., Wann S., Mené P., Dubyak G. R., Kester M., Nakazato Y., Sedor J. R., Dunn M. J. Endothelin stimulates phospholipase C, Na+/H+ exchange, c-fos expression, and mitogenesis in rat mesangial cells. J Clin Invest. 1989 Feb;83(2):708–712. doi: 10.1172/JCI113935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Simpson A. W., Ashley C. C. Endothelin evoked Ca2+ transients and oscillations in A10 vascular smooth muscle cells. Biochem Biophys Res Commun. 1989 Sep 29;163(3):1223–1229. doi: 10.1016/0006-291x(89)91108-x. [DOI] [PubMed] [Google Scholar]
  53. Sun P., Enslen H., Myung P. S., Maurer R. A. Differential activation of CREB by Ca2+/calmodulin-dependent protein kinases type II and type IV involves phosphorylation of a site that negatively regulates activity. Genes Dev. 1994 Nov 1;8(21):2527–2539. doi: 10.1101/gad.8.21.2527. [DOI] [PubMed] [Google Scholar]
  54. Tanaka M., Herr W. Differential transcriptional activation by Oct-1 and Oct-2: interdependent activation domains induce Oct-2 phosphorylation. Cell. 1990 Feb 9;60(3):375–386. doi: 10.1016/0092-8674(90)90589-7. [DOI] [PubMed] [Google Scholar]
  55. Yamashita J., Ogawa M., Egami H., Matsuo S., Kiyohara H., Inada K., Yamashita S., Fujita S. Abundant expression of immunoreactive endothelin 1 in mammary phyllodes tumor: possible paracrine role of endothelin 1 in the growth of stromal cells in phyllodes tumor. Cancer Res. 1992 Jul 15;52(14):4046–4049. [PubMed] [Google Scholar]
  56. Yanagisawa M., Kurihara H., Kimura S., Tomobe Y., Kobayashi M., Mitsui Y., Yazaki Y., Goto K., Masaki T. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature. 1988 Mar 31;332(6163):411–415. doi: 10.1038/332411a0. [DOI] [PubMed] [Google Scholar]
  57. Yanagisawa M. The endothelin system. A new target for therapeutic intervention. Circulation. 1994 Mar;89(3):1320–1322. doi: 10.1161/01.cir.89.3.1320. [DOI] [PubMed] [Google Scholar]
  58. Zhao Y., Sudol M., Hanafusa H., Krueger J. Increased tyrosine kinase activity of c-Src during calcium-induced keratinocyte differentiation. Proc Natl Acad Sci U S A. 1992 Sep 1;89(17):8298–8302. doi: 10.1073/pnas.89.17.8298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Zhao Y., Uyttendaele H., Krueger J. G., Sudol M., Hanafusa H. Inactivation of c-Yes tyrosine kinase by elevation of intracellular calcium levels. Mol Cell Biol. 1993 Dec;13(12):7507–7514. doi: 10.1128/mcb.13.12.7507. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES