Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1996 Nov;16(11):6075–6082. doi: 10.1128/mcb.16.11.6075

Regulation of type I adenylyl cyclase by calmodulin kinase IV in vivo.

G A Wayman 1, J Wei 1, S Wong 1, D R Storm 1
PMCID: PMC231610  PMID: 8887637

Abstract

Type I adenylyl cyclase is a neurospecific enzyme that is stimulated by Ca2+ and calmodulin (CaM). This enzyme couples the Ca2+ and cyclic AMP (cAMP) regulatory systems in neurons, and it may play an important role for some forms of synaptic plasticity. Mutant mice lacking type I adenylyl cyclase show deficiencies in spatial memory and altered long-term potentiation (Z. Wu, S. A. Thomas, Z. Xia, E. C. Villacres, R. D. Palmiter, and D. R. Storm, Proc. Natl. Acad. Sci. USA 92:220-224, 1995). Although type I adenylyl cyclase is synergistically stimulated by Ca2+ and G-protein-coupled receptors in vivo, very little is known about mechanisms for inhibition of the enzyme. Here, we report that type I adenylyl cyclase is inhibited by CaM kinase IV in vivo. Expression of constitutively active or wild-type CaM kinase IV inhibited Ca2+ stimulation of adenylyl cyclase activity without affecting basal or forskolin-stimulated activity. Type I adenylyl cyclase has two CaM kinase IV consensus phosphorylation sequences near its CaM binding domain at Ser-545 and Ser-552. Conversion of either serine to alanine by mutagenesis abolished CaM kinase IV inhibition of adenylyl cyclase. This suggests that the activity of this enzyme may be directly inhibited by CaM kinase IV phosphorylation. Type VIII adenylyl cyclase, another enzyme stimulated by CaM, was not inhibited by CaM kinase II or IV. We propose that CaM kinase IV may function as a negative feedback regulator of type I adenylyl cyclase and that CaM kinases may regulate cAMP levels in some cells.

Full Text

The Full Text of this article is available as a PDF (383.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bentley J. K., Beavo J. A. Regulation and function of cyclic nucleotides. Curr Opin Cell Biol. 1992 Apr;4(2):233–240. doi: 10.1016/0955-0674(92)90038-e. [DOI] [PubMed] [Google Scholar]
  2. Birnbaumer L. Receptor-to-effector signaling through G proteins: roles for beta gamma dimers as well as alpha subunits. Cell. 1992 Dec 24;71(7):1069–1072. doi: 10.1016/s0092-8674(05)80056-x. [DOI] [PubMed] [Google Scholar]
  3. Bokoch G. M., Katada T., Northup J. K., Hewlett E. L., Gilman A. G. Identification of the predominant substrate for ADP-ribosylation by islet activating protein. J Biol Chem. 1983 Feb 25;258(4):2072–2075. [PubMed] [Google Scholar]
  4. Bourne H. R., Lustig K. D., Wong Y. H., Conklin B. R. Detection of coincident signals by G proteins and adenylyl cyclase. Cold Spring Harb Symp Quant Biol. 1992;57:145–148. doi: 10.1101/sqb.1992.057.01.018. [DOI] [PubMed] [Google Scholar]
  5. Cali J. J., Zwaagstra J. C., Mons N., Cooper D. M., Krupinski J. Type VIII adenylyl cyclase. A Ca2+/calmodulin-stimulated enzyme expressed in discrete regions of rat brain. J Biol Chem. 1994 Apr 22;269(16):12190–12195. [PubMed] [Google Scholar]
  6. Chen C., Okayama H. High-efficiency transformation of mammalian cells by plasmid DNA. Mol Cell Biol. 1987 Aug;7(8):2745–2752. doi: 10.1128/mcb.7.8.2745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Choi E. J., Wong S. T., Dittman A. H., Storm D. R. Phorbol ester stimulation of the type I and type III adenylyl cyclases in whole cells. Biochemistry. 1993 Mar 2;32(8):1891–1894. doi: 10.1021/bi00059a001. [DOI] [PubMed] [Google Scholar]
  8. Choi E. J., Wong S. T., Hinds T. R., Storm D. R. Calcium and muscarinic agonist stimulation of type I adenylylcyclase in whole cells. J Biol Chem. 1992 Jun 25;267(18):12440–12442. [PubMed] [Google Scholar]
  9. Codina J., Hildebrandt J., Iyengar R., Birnbaumer L., Sekura R. D., Manclark C. R. Pertussis toxin substrate, the putative Ni component of adenylyl cyclases, is an alpha beta heterodimer regulated by guanine nucleotide and magnesium. Proc Natl Acad Sci U S A. 1983 Jul;80(14):4276–4280. doi: 10.1073/pnas.80.14.4276. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cooper D. M., Yoshimura M., Zhang Y., Chiono M., Mahey R. Capacitative Ca2+ entry regulates Ca(2+)-sensitive adenylyl cyclases. Biochem J. 1994 Feb 1;297(Pt 3):437–440. doi: 10.1042/bj2970437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dittman A. H., Weber J. P., Hinds T. R., Choi E. J., Migeon J. C., Nathanson N. M., Storm D. R. A novel mechanism for coupling of m4 muscarinic acetylcholine receptors to calmodulin-sensitive adenylyl cyclases: crossover from G protein-coupled inhibition to stimulation. Biochemistry. 1994 Feb 1;33(4):943–951. doi: 10.1021/bi00170a013. [DOI] [PubMed] [Google Scholar]
  12. Federman A. D., Conklin B. R., Schrader K. A., Reed R. R., Bourne H. R. Hormonal stimulation of adenylyl cyclase through Gi-protein beta gamma subunits. Nature. 1992 Mar 12;356(6365):159–161. doi: 10.1038/356159a0. [DOI] [PubMed] [Google Scholar]
  13. Hill H. D., Straka J. G. Protein determination using bicinchoninic acid in the presence of sulfhydryl reagents. Anal Biochem. 1988 Apr;170(1):203–208. doi: 10.1016/0003-2697(88)90109-1. [DOI] [PubMed] [Google Scholar]
  14. Iwami G., Kawabe J., Ebina T., Cannon P. J., Homcy C. J., Ishikawa Y. Regulation of adenylyl cyclase by protein kinase A. J Biol Chem. 1995 May 26;270(21):12481–12484. doi: 10.1074/jbc.270.21.12481. [DOI] [PubMed] [Google Scholar]
  15. Jacobowitz O., Chen J., Premont R. T., Iyengar R. Stimulation of specific types of Gs-stimulated adenylyl cyclases by phorbol ester treatment. J Biol Chem. 1993 Feb 25;268(6):3829–3832. [PubMed] [Google Scholar]
  16. Jacobowitz O., Iyengar R. Phorbol ester-induced stimulation and phosphorylation of adenylyl cyclase 2. Proc Natl Acad Sci U S A. 1994 Oct 25;91(22):10630–10634. doi: 10.1073/pnas.91.22.10630. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Katada T., Kusakabe K., Oinuma M., Ui M. A novel mechanism for the inhibition of adenylate cyclase via inhibitory GTP-binding proteins. Calmodulin-dependent inhibition of the cyclase catalyst by the beta gamma-subunits of GTP-binding proteins. J Biol Chem. 1987 Sep 5;262(25):11897–11900. [PubMed] [Google Scholar]
  18. Katsushika S., Chen L., Kawabe J., Nilakantan R., Halnon N. J., Homcy C. J., Ishikawa Y. Cloning and characterization of a sixth adenylyl cyclase isoform: types V and VI constitute a subgroup within the mammalian adenylyl cyclase family. Proc Natl Acad Sci U S A. 1992 Sep 15;89(18):8774–8778. doi: 10.1073/pnas.89.18.8774. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kawabe J., Iwami G., Ebina T., Ohno S., Katada T., Ueda Y., Homcy C. J., Ishikawa Y. Differential activation of adenylyl cyclase by protein kinase C isoenzymes. J Biol Chem. 1994 Jun 17;269(24):16554–16558. [PubMed] [Google Scholar]
  20. Londos C., Cooper D. M., Schlegel W., Rodbell M. Adenosine analogs inhibit adipocyte adenylate cyclase by a GTP-dependent process: basis for actions of adenosine and methylxanthines on cyclic AMP production and lipolysis. Proc Natl Acad Sci U S A. 1978 Nov;75(11):5362–5366. doi: 10.1073/pnas.75.11.5362. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Masure H. R., Head J. F., Tice H. M. Studies on the alpha-subunit of bovine brain S-100 protein. Biochem J. 1984 Mar 15;218(3):691–696. doi: 10.1042/bj2180691. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Matthews R. P., Guthrie C. R., Wailes L. M., Zhao X., Means A. R., McKnight G. S. Calcium/calmodulin-dependent protein kinase types II and IV differentially regulate CREB-dependent gene expression. Mol Cell Biol. 1994 Sep;14(9):6107–6116. doi: 10.1128/mcb.14.9.6107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Nakamura Y., Okuno S., Sato F., Fujisawa H. An immunohistochemical study of Ca2+/calmodulin-dependent protein kinase IV in the rat central nervous system: light and electron microscopic observations. Neuroscience. 1995 Sep;68(1):181–194. doi: 10.1016/0306-4522(95)00092-w. [DOI] [PubMed] [Google Scholar]
  24. Piascik M. T., Wisler P. L., Johnson C. L., Potter J. D. Ca2+-dependent regulation of guinea pig brain adenylate cyclase. J Biol Chem. 1980 May 10;255(9):4176–4181. [PubMed] [Google Scholar]
  25. Reddy R., Smith D., Wayman G., Wu Z., Villacres E. C., Storm D. R. Voltage-sensitive adenylyl cyclase activity in cultured neurons. A calcium-independent phenomenon. J Biol Chem. 1995 Jun 16;270(24):14340–14346. doi: 10.1074/jbc.270.24.14340. [DOI] [PubMed] [Google Scholar]
  26. Restrepo D., Miyamoto T., Bryant B. P., Teeter J. H. Odor stimuli trigger influx of calcium into olfactory neurons of the channel catfish. Science. 1990 Sep 7;249(4973):1166–1168. doi: 10.1126/science.2168580. [DOI] [PubMed] [Google Scholar]
  27. Salomon Y., Londos C., Rodbell M. A highly sensitive adenylate cyclase assay. Anal Biochem. 1974 Apr;58(2):541–548. doi: 10.1016/0003-2697(74)90222-x. [DOI] [PubMed] [Google Scholar]
  28. Sugimoto M., Esaki N., Tanaka H., Soda K. A simple and efficient method for the oligonucleotide-directed mutagenesis using plasmid DNA template and phosphorothioate-modified nucleotide. Anal Biochem. 1989 Jun;179(2):309–311. doi: 10.1016/0003-2697(89)90134-6. [DOI] [PubMed] [Google Scholar]
  29. Tang W. J., Gilman A. G. Type-specific regulation of adenylyl cyclase by G protein beta gamma subunits. Science. 1991 Dec 6;254(5037):1500–1503. doi: 10.1126/science.1962211. [DOI] [PubMed] [Google Scholar]
  30. Tota M. R., Xia Z. Q., Storm D. R., Schimerlik M. I. Reconstitution of muscarinic receptor-mediated inhibition of adenylyl cyclase. Mol Pharmacol. 1990 Jun;37(6):950–957. [PubMed] [Google Scholar]
  31. Villacres E. C., Wu Z., Hua W., Nielsen M. D., Watters J. J., Yan C., Beavo J., Storm D. R. Developmentally expressed Ca(2+)-sensitive adenylyl cyclase activity is disrupted in the brains of type I adenylyl cyclase mutant mice. J Biol Chem. 1995 Jun 16;270(24):14352–14357. doi: 10.1074/jbc.270.24.14352. [DOI] [PubMed] [Google Scholar]
  32. Wayman G. A., Impey S., Storm D. R. Ca2+ inhibition of type III adenylyl cyclase in vivo. J Biol Chem. 1995 Sep 15;270(37):21480–21486. doi: 10.1074/jbc.270.37.21480. [DOI] [PubMed] [Google Scholar]
  33. Wayman G. A., Impey S., Wu Z., Kindsvogel W., Prichard L., Storm D. R. Synergistic activation of the type I adenylyl cyclase by Ca2+ and Gs-coupled receptors in vivo. J Biol Chem. 1994 Oct 14;269(41):25400–25405. [PubMed] [Google Scholar]
  34. Wong Y. H., Federman A., Pace A. M., Zachary I., Evans T., Pouysségur J., Bourne H. R. Mutant alpha subunits of Gi2 inhibit cyclic AMP accumulation. Nature. 1991 May 2;351(6321):63–65. doi: 10.1038/351063a0. [DOI] [PubMed] [Google Scholar]
  35. Wu Z. L., Thomas S. A., Villacres E. C., Xia Z., Simmons M. L., Chavkin C., Palmiter R. D., Storm D. R. Altered behavior and long-term potentiation in type I adenylyl cyclase mutant mice. Proc Natl Acad Sci U S A. 1995 Jan 3;92(1):220–224. doi: 10.1073/pnas.92.1.220. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Xia Z. G., Refsdal C. D., Merchant K. M., Dorsa D. M., Storm D. R. Distribution of mRNA for the calmodulin-sensitive adenylate cyclase in rat brain: expression in areas associated with learning and memory. Neuron. 1991 Mar;6(3):431–443. doi: 10.1016/0896-6273(91)90251-t. [DOI] [PubMed] [Google Scholar]
  37. Yoshimura M., Cooper D. M. Cloning and expression of a Ca(2+)-inhibitable adenylyl cyclase from NCB-20 cells. Proc Natl Acad Sci U S A. 1992 Aug 1;89(15):6716–6720. doi: 10.1073/pnas.89.15.6716. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES