Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1996 Nov;16(11):6160–6168. doi: 10.1128/mcb.16.11.6160

CRISP-3, a protein with homology to plant defense proteins, is expressed in mouse B cells under the control of Oct2.

P Pfisterer 1, H König 1, J Hess 1, G Lipowsky 1, B Haendler 1, W D Schleuning 1, T Wirth 1
PMCID: PMC231619  PMID: 8887646

Abstract

The Oct2 transcription factor is expressed throughout the B-lymphoid lineage and plays an essential role during the terminal phase of B-cell differentiation. Several genes specifically expressed in B lymphocytes have been identified that contain a functional octamer motif in their regulatory elements. However, expression of only a single gene, the murine CD36 gene, has been shown to date to be dependent on Oct2. Here, we present the identification and characterization of a further gene, coding for cysteine-rich secreted protein 3 (CRISP-3), whose expression in B cells is regulated by Oct2. We show that CRISP-3 is expressed in the B-lymphoid lineage specifically at the pre-B-cell stage. By using different experimental strategies, including nuclear run-on experiments, we demonstrate that this gene is transcriptionally activated by Oct2. Furthermore, analysis of CRISP-3 expression in primary B cells derived from either wild-type or Oct2-deficient mice demonstrates the dependence on Oct2. Two variant octamer motifs were identified in the upstream promoter region of the crisp-3 gene, and Oct2 interacts with both of them in vitro. Cotransfection experiments with expression vectors for Oct1 and Oct2 together with a reporter driven by the crisp-3 promoter showed that transcriptional activation of this promoter can only be achieved with Oct2. The C-terminal transactivation domain of Oct2 is required for this activation. Finally, introducing specific mutations in the two variant octamer motifs revealed that both of them are important for full transcriptional activation by Oct2.

Full Text

The Full Text of this article is available as a PDF (2.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexander D., Goodman R. M., Gut-Rella M., Glascock C., Weymann K., Friedrich L., Maddox D., Ahl-Goy P., Luntz T., Ward E. Increased tolerance to two oomycete pathogens in transgenic tobacco expressing pathogenesis-related protein 1a. Proc Natl Acad Sci U S A. 1993 Aug 1;90(15):7327–7331. doi: 10.1073/pnas.90.15.7327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Annweiler A., Müller-Immerglück M., Wirth T. Oct2 transactivation from a remote enhancer position requires a B-cell-restricted activity. Mol Cell Biol. 1992 Jul;12(7):3107–3116. doi: 10.1128/mcb.12.7.3107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Annweiler A., Zwilling S., Hipskind R. A., Wirth T. Analysis of transcriptional stimulation by recombinant Oct proteins in a cell-free system. J Biol Chem. 1993 Feb 5;268(4):2525–2534. [PubMed] [Google Scholar]
  4. Annweiler A., Zwilling S., Wirth T. Functional differences between the Oct2 transactivation domains determine the transactivation potential of individual Oct2 isoforms. Nucleic Acids Res. 1994 Oct 11;22(20):4250–4258. doi: 10.1093/nar/22.20.4250. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brooks D. E., Tiver K. Localization of epididymal secretory proteins on rat spermatozoa. J Reprod Fertil. 1983 Nov;69(2):651–657. doi: 10.1530/jrf.0.0690651. [DOI] [PubMed] [Google Scholar]
  6. Charest N. J., Joseph D. R., Wilson E. M., French F. S. Molecular cloning of complementary deoxyribonucleic acid for an androgen-regulated epididymal protein: sequence homology with metalloproteins. Mol Endocrinol. 1988 Oct;2(10):999–1004. doi: 10.1210/mend-2-10-999. [DOI] [PubMed] [Google Scholar]
  7. Corcoran L. M., Karvelas M., Nossal G. J., Ye Z. S., Jacks T., Baltimore D. Oct-2, although not required for early B-cell development, is critical for later B-cell maturation and for postnatal survival. Genes Dev. 1993 Apr;7(4):570–582. doi: 10.1101/gad.7.4.570. [DOI] [PubMed] [Google Scholar]
  8. Corcoran L. M., Karvelas M. Oct-2 is required early in T cell-independent B cell activation for G1 progression and for proliferation. Immunity. 1994 Nov;1(8):635–645. doi: 10.1016/1074-7613(94)90035-3. [DOI] [PubMed] [Google Scholar]
  9. Cornelissen B. J., Horowitz J., van Kan J. A., Goldberg R. B., Bol J. F. Structure of tobacco genes encoding pathogenesis-related proteins from the PR-1 group. Nucleic Acids Res. 1987 Sep 11;15(17):6799–6811. doi: 10.1093/nar/15.17.6799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Eberspaecher U., Roosterman D., Krätzschmar J., Haendler B., Habenicht U. F., Becker A., Quensel C., Petri T., Schleuning W. D., Donner P. Mouse androgen-dependent epididymal glycoprotein CRISP-1 (DE/AEG): isolation, biochemical characterization, and expression in recombinant form. Mol Reprod Dev. 1995 Oct;42(2):157–172. doi: 10.1002/mrd.1080420205. [DOI] [PubMed] [Google Scholar]
  11. Falkner F. G., Zachau H. G. Correct transcription of an immunoglobulin kappa gene requires an upstream fragment containing conserved sequence elements. Nature. 1984 Jul 5;310(5972):71–74. doi: 10.1038/310071a0. [DOI] [PubMed] [Google Scholar]
  12. Feldhaus A. L., Klug C. A., Arvin K. L., Singh H. Targeted disruption of the Oct-2 locus in a B cell provides genetic evidence for two distinct cell type-specific pathways of octamer element-mediated gene activation. EMBO J. 1993 Jul;12(7):2763–2772. doi: 10.1002/j.1460-2075.1993.tb05937.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gerster T., Balmaceda C. G., Roeder R. G. The cell type-specific octamer transcription factor OTF-2 has two domains required for the activation of transcription. EMBO J. 1990 May;9(5):1635–1643. doi: 10.1002/j.1460-2075.1990.tb08283.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gstaiger M., Knoepfel L., Georgiev O., Schaffner W., Hovens C. M. A B-cell coactivator of octamer-binding transcription factors. Nature. 1995 Jan 26;373(6512):360–362. doi: 10.1038/373360a0. [DOI] [PubMed] [Google Scholar]
  15. Haendler B., Krätzschmar J., Theuring F., Schleuning W. D. Transcripts for cysteine-rich secretory protein-1 (CRISP-1; DE/AEG) and the novel related CRISP-3 are expressed under androgen control in the mouse salivary gland. Endocrinology. 1993 Jul;133(1):192–198. doi: 10.1210/endo.133.1.8319566. [DOI] [PubMed] [Google Scholar]
  16. Hardy D. M., Huang T. T., Jr, Driscoll W. J., Tung K. K., Wild G. C. Purification and characterization of the primary acrosomal autoantigen of guinea pig epididymal spermatozoa. Biol Reprod. 1988 Mar;38(2):423–437. doi: 10.1095/biolreprod38.2.423. [DOI] [PubMed] [Google Scholar]
  17. Herr W., Cleary M. A. The POU domain: versatility in transcriptional regulation by a flexible two-in-one DNA-binding domain. Genes Dev. 1995 Jul 15;9(14):1679–1693. doi: 10.1101/gad.9.14.1679. [DOI] [PubMed] [Google Scholar]
  18. Herr W., Sturm R. A., Clerc R. G., Corcoran L. M., Baltimore D., Sharp P. A., Ingraham H. A., Rosenfeld M. G., Finney M., Ruvkun G. The POU domain: a large conserved region in the mammalian pit-1, oct-1, oct-2, and Caenorhabditis elegans unc-86 gene products. Genes Dev. 1988 Dec;2(12A):1513–1516. doi: 10.1101/gad.2.12a.1513. [DOI] [PubMed] [Google Scholar]
  19. Kasahara M., Gutknecht J., Brew K., Spurr N., Goodfellow P. N. Cloning and mapping of a testis-specific gene with sequence similarity to a sperm-coating glycoprotein gene. Genomics. 1989 Oct;5(3):527–534. doi: 10.1016/0888-7543(89)90019-0. [DOI] [PubMed] [Google Scholar]
  20. Kistler B., Pfisterer P., Wirth T. Lymphoid- and myeloid-specific activity of the PU.1 promoter is determined by the combinatorial action of octamer and ets transcription factors. Oncogene. 1995 Sep 21;11(6):1095–1106. [PubMed] [Google Scholar]
  21. König H., Pfisterer P., Corcoran L. M., Wirth T. Identification of CD36 as the first gene dependent on the B-cell differentiation factor Oct-2. Genes Dev. 1995 Jul 1;9(13):1598–1607. doi: 10.1101/gad.9.13.1598. [DOI] [PubMed] [Google Scholar]
  22. König H., Ponta H., Rahmsdorf U., Büscher M., Schönthal A., Rahmsdorf H. J., Herrlich P. Autoregulation of fos: the dyad symmetry element as the major target of repression. EMBO J. 1989 Sep;8(9):2559–2566. doi: 10.1002/j.1460-2075.1989.tb08394.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lernbecher T., Müller U., Wirth T. Distinct NF-kappa B/Rel transcription factors are responsible for tissue-specific and inducible gene activation. Nature. 1993 Oct 21;365(6448):767–770. doi: 10.1038/365767a0. [DOI] [PubMed] [Google Scholar]
  24. Luo Y., Fujii H., Gerster T., Roeder R. G. A novel B cell-derived coactivator potentiates the activation of immunoglobulin promoters by octamer-binding transcription factors. Cell. 1992 Oct 16;71(2):231–241. doi: 10.1016/0092-8674(92)90352-d. [DOI] [PubMed] [Google Scholar]
  25. Luo Y., Roeder R. G. Cloning, functional characterization, and mechanism of action of the B-cell-specific transcriptional coactivator OCA-B. Mol Cell Biol. 1995 Aug;15(8):4115–4124. doi: 10.1128/mcb.15.8.4115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Mochca-Morales J., Martin B. M., Possani L. D. Isolation and characterization of helothermine, a novel toxin from Heloderma horridum horridum (Mexican beaded lizard) venom. Toxicon. 1990;28(3):299–309. doi: 10.1016/0041-0101(90)90065-f. [DOI] [PubMed] [Google Scholar]
  27. Morrissette J., Krätzschmar J., Haendler B., el-Hayek R., Mochca-Morales J., Martin B. M., Patel J. R., Moss R. L., Schleuning W. D., Coronado R. Primary structure and properties of helothermine, a peptide toxin that blocks ryanodine receptors. Biophys J. 1995 Jun;68(6):2280–2288. doi: 10.1016/S0006-3495(95)80410-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Müller-Immerglück M. M., Schaffner W., Matthias P. Transcription factor Oct-2A contains functionally redundant activating domains and works selectively from a promoter but not from a remote enhancer position in non-lymphoid (HeLa) cells. EMBO J. 1990 May;9(5):1625–1634. doi: 10.1002/j.1460-2075.1990.tb08282.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Parslow T. G., Blair D. L., Murphy W. J., Granner D. K. Structure of the 5' ends of immunoglobulin genes: a novel conserved sequence. Proc Natl Acad Sci U S A. 1984 May;81(9):2650–2654. doi: 10.1073/pnas.81.9.2650. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Pfisterer P., Annweiler A., Ullmer C., Corcoran L. M., Wirth T. Differential transactivation potential of Oct1 and Oct2 is determined by additional B cell-specific activities. EMBO J. 1994 Apr 1;13(7):1654–1663. doi: 10.1002/j.1460-2075.1994.tb06429.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Pfisterer P., Zwilling S., Hess J., Wirth T. Functional characterization of the murine homolog of the B cell-specific coactivator BOB.1/OBF.1. J Biol Chem. 1995 Dec 15;270(50):29870–29880. doi: 10.1074/jbc.270.50.29870. [DOI] [PubMed] [Google Scholar]
  32. Rigden J., Coutts R. Pathogenesis-related proteins in plants. Trends Genet. 1988 Apr;4(4):87–89. doi: 10.1016/0168-9525(88)90091-1. [DOI] [PubMed] [Google Scholar]
  33. Rosenfeld M. G. POU-domain transcription factors: pou-er-ful developmental regulators. Genes Dev. 1991 Jun;5(6):897–907. doi: 10.1101/gad.5.6.897. [DOI] [PubMed] [Google Scholar]
  34. Schwidetzky U., Haendler B., Schleuning W. D. Isolation and characterization of the androgen-dependent mouse cysteine-rich secretory protein-3 (CRISP-3) gene. Biochem J. 1995 Aug 1;309(Pt 3):831–836. doi: 10.1042/bj3090831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Staudt L. M., Clerc R. G., Singh H., LeBowitz J. H., Sharp P. A., Baltimore D. Cloning of a lymphoid-specific cDNA encoding a protein binding the regulatory octamer DNA motif. Science. 1988 Jul 29;241(4865):577–580. doi: 10.1126/science.3399892. [DOI] [PubMed] [Google Scholar]
  36. Staudt L. M., Lenardo M. J. Immunoglobulin gene transcription. Annu Rev Immunol. 1991;9:373–398. doi: 10.1146/annurev.iy.09.040191.002105. [DOI] [PubMed] [Google Scholar]
  37. Strubin M., Newell J. W., Matthias P. OBF-1, a novel B cell-specific coactivator that stimulates immunoglobulin promoter activity through association with octamer-binding proteins. Cell. 1995 Feb 10;80(3):497–506. doi: 10.1016/0092-8674(95)90500-6. [DOI] [PubMed] [Google Scholar]
  38. Sturm R. A., Das G., Herr W. The ubiquitous octamer-binding protein Oct-1 contains a POU domain with a homeo box subdomain. Genes Dev. 1988 Dec;2(12A):1582–1599. doi: 10.1101/gad.2.12a.1582. [DOI] [PubMed] [Google Scholar]
  39. Sturm R. A., Herr W. The POU domain is a bipartite DNA-binding structure. Nature. 1988 Dec 8;336(6199):601–604. doi: 10.1038/336601a0. [DOI] [PubMed] [Google Scholar]
  40. Tanaka M., Herr W. Differential transcriptional activation by Oct-1 and Oct-2: interdependent activation domains induce Oct-2 phosphorylation. Cell. 1990 Feb 9;60(3):375–386. doi: 10.1016/0092-8674(90)90589-7. [DOI] [PubMed] [Google Scholar]
  41. Tanaka M., Lai J. S., Herr W. Promoter-selective activation domains in Oct-1 and Oct-2 direct differential activation of an snRNA and mRNA promoter. Cell. 1992 Feb 21;68(4):755–767. doi: 10.1016/0092-8674(92)90150-b. [DOI] [PubMed] [Google Scholar]
  42. Verrijzer C. P., Alkema M. J., van Weperen W. W., Van Leeuwen H. C., Strating M. J., van der Vliet P. C. The DNA binding specificity of the bipartite POU domain and its subdomains. EMBO J. 1992 Dec;11(13):4993–5003. doi: 10.1002/j.1460-2075.1992.tb05606.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Webster N. J., Green S., Jin J. R., Chambon P. The hormone-binding domains of the estrogen and glucocorticoid receptors contain an inducible transcription activation function. Cell. 1988 Jul 15;54(2):199–207. doi: 10.1016/0092-8674(88)90552-1. [DOI] [PubMed] [Google Scholar]
  44. Wirth T., Pfisterer P., Annweiler A., Zwilling S., König H. Molecular principles of Oct2-mediated gene activation in B cells. Immunobiology. 1995 Jul;193(2-4):161–170. doi: 10.1016/S0171-2985(11)80540-1. [DOI] [PubMed] [Google Scholar]
  45. Wirth T., Priess A., Annweiler A., Zwilling S., Oeler B. Multiple Oct2 isoforms are generated by alternative splicing. Nucleic Acids Res. 1991 Jan 11;19(1):43–51. doi: 10.1093/nar/19.1.43. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Wirth T., Staudt L., Baltimore D. An octamer oligonucleotide upstream of a TATA motif is sufficient for lymphoid-specific promoter activity. Nature. 1987 Sep 10;329(6135):174–178. doi: 10.1038/329174a0. [DOI] [PubMed] [Google Scholar]
  47. Zwilling S., König H., Wirth T. High mobility group protein 2 functionally interacts with the POU domains of octamer transcription factors. EMBO J. 1995 Mar 15;14(6):1198–1208. doi: 10.1002/j.1460-2075.1995.tb07103.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES