Abstract
Many tumors exhibit extensive chromosomal instability, but karyotypic alterations will be significant in carcinogenesis only by influencing specific oncogenes or tumor suppressor loci within the affected chromosomal segments. In this investigation, the specificity of chromosomal rearrangements attributable to radiation-induced genomic instability is detailed, and a qualitative and quantitative correspondence with mutagenesis is demonstrated. Chromosomal abnormalities preferentially occurred near the site of prior rearrangements, resulting in complex abnormalities, or near the centromere, resulting in deletion or translocation of the entire chromosome arm, but no case of an interstitial chromosomal deletion was observed. Evidence for chromosomal instability in the progeny of irradiated cells also included clonal karyotypic heterogeneity. The persistence of instability was demonstrated for at least 80 generations by elevated mutation rates at the heterozygous, autosomal marker locus tk. Among those TK- mutants that showed a loss of heterozygosity, a statistically significant increase in mutation rate was observed only for those in which the loss of heterozygosity encompasses the telomeric region. This mutational specificity corresponds with the prevalence of terminal deletions, additions, and translocations, and the absence of interstitial deletions, in karyotypic analysis. Surprisingly, the elevated rate of TK- mutations is also partially attributable to intragenic base substitutions and small deletions, and DNA sequence analysis of some of these mutations is presented. Complex chromosomal abnormalities appear to be the most significant indicators of a high rate of persistent genetic instability which correlates with increased rates of both intragenic and chromosomal-scale mutations at tk.
Full Text
The Full Text of this article is available as a PDF (741.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Amundson S. A., Liber H. L. A comparison of induced mutation at homologous alleles of the tk locus in human cells. II. Molecular analysis of mutants. Mutat Res. 1992 May;267(1):89–95. doi: 10.1016/0027-5107(92)90113-g. [DOI] [PubMed] [Google Scholar]
- Bailly M., Bertrand S., Doré J. F. Increased spontaneous mutation rates and prevalence of karyotype abnormalities in highly metastatic human melanoma cell lines. Melanoma Res. 1993 Feb;3(1):51–61. doi: 10.1097/00008390-199304000-00008. [DOI] [PubMed] [Google Scholar]
- Bhattacharyya N. P., Skandalis A., Ganesh A., Groden J., Meuth M. Mutator phenotypes in human colorectal carcinoma cell lines. Proc Natl Acad Sci U S A. 1994 Jul 5;91(14):6319–6323. doi: 10.1073/pnas.91.14.6319. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cavenee W. K., Dryja T. P., Phillips R. A., Benedict W. F., Godbout R., Gallie B. L., Murphree A. L., Strong L. C., White R. L. Expression of recessive alleles by chromosomal mechanisms in retinoblastoma. 1983 Oct 27-Nov 2Nature. 305(5937):779–784. doi: 10.1038/305779a0. [DOI] [PubMed] [Google Scholar]
- Chang W. P., Little J. B. Delayed reproductive death in X-irradiated Chinese hamster ovary cells. Int J Radiat Biol. 1991 Sep;60(3):483–496. doi: 10.1080/09553009114552331. [DOI] [PubMed] [Google Scholar]
- Chang W. P., Little J. B. Persistently elevated frequency of spontaneous mutations in progeny of CHO clones surviving X-irradiation: association with delayed reproductive death phenotype. Mutat Res. 1992 Nov 16;270(2):191–199. doi: 10.1016/0027-5107(92)90130-t. [DOI] [PubMed] [Google Scholar]
- Chaudhry M. A., Jiang Q., Ricanati M., Horng M. F., Evans H. H. Characterization of multilocus lesions in human cells exposed to X radiation and radon. Radiat Res. 1996 Jan;145(1):31–38. [PubMed] [Google Scholar]
- Christians F. C., Newcomb T. G., Loeb L. A. Potential sources of multiple mutations in human cancers. Prev Med. 1995 Jul;24(4):329–332. doi: 10.1006/pmed.1995.1054. [DOI] [PubMed] [Google Scholar]
- Elmore E., Kakunaga T., Barrett J. C. Comparison of spontaneous mutation rates of normal and chemically transformed human skin fibroblasts. Cancer Res. 1983 Apr;43(4):1650–1655. [PubMed] [Google Scholar]
- Eshleman J. R., Lang E. Z., Bowerfind G. K., Parsons R., Vogelstein B., Willson J. K., Veigl M. L., Sedwick W. D., Markowitz S. D. Increased mutation rate at the hprt locus accompanies microsatellite instability in colon cancer. Oncogene. 1995 Jan 5;10(1):33–37. [PubMed] [Google Scholar]
- Fain P. R., Solomon E., Ledbetter D. H. Second international workshop on human chromosome 17. Cytogenet Cell Genet. 1991;57(2-3):66–77. [PubMed] [Google Scholar]
- Flemington E., Bradshaw H. D., Jr, Traina-Dorge V., Slagel V., Deininger P. L. Sequence, structure and promoter characterization of the human thymidine kinase gene. Gene. 1987;52(2-3):267–277. doi: 10.1016/0378-1119(87)90053-9. [DOI] [PubMed] [Google Scholar]
- Frost P., Kendal W., Hunt B., Ellis M. The prevalence of ouabain-resistant variants after mutagen treatment. Lack of correlation between the frequency of variant expression and the metastatic phenotype. Invasion Metastasis. 1988;8(2):73–86. [PubMed] [Google Scholar]
- Giver C. R., Nelson S. L., Grosovsky A. J. Spectrum of spontaneous HPRT- mutations in TK6 human lymphoblasts. Environ Mol Mutagen. 1993;22(3):138–146. doi: 10.1002/em.2850220305. [DOI] [PubMed] [Google Scholar]
- Giver C. R., Nelson S. L., Jr, Cha M. Y., Pongsaensook P., Grosovsky A. J. Mutational spectrum of X-ray induced TK- human cell mutants. Carcinogenesis. 1995 Feb;16(2):267–275. doi: 10.1093/carcin/16.2.267. [DOI] [PubMed] [Google Scholar]
- Grosovsky A. J., Walter B. N., Giver C. R. DNA-sequence specificity of mutations at the human thymidine kinase locus. Mutat Res. 1993 Oct;289(2):231–243. doi: 10.1016/0027-5107(93)90074-p. [DOI] [PubMed] [Google Scholar]
- Gusella J. F., Housman D. Induction of erythroid differentiation in vitro by purines and purine analogues. Cell. 1976 Jun;8(2):263–269. doi: 10.1016/0092-8674(76)90010-6. [DOI] [PubMed] [Google Scholar]
- Harwood J., Meuth M. Deletion mapping of highly conserved transcribed sequence downstream from APRT locus. Somat Cell Mol Genet. 1995 May;21(3):151–160. doi: 10.1007/BF02254767. [DOI] [PubMed] [Google Scholar]
- Harwood J., Tachibana A., Davis R., Bhattacharyya N. P., Meuth M. High rate of multilocus deletion in a human tumor cell line. Hum Mol Genet. 1993 Feb;2(2):165–171. doi: 10.1093/hmg/2.2.165. [DOI] [PubMed] [Google Scholar]
- Holmberg K., Fält S., Johansson A., Lambert B. Clonal chromosome aberrations and genomic instability in X-irradiated human T-lymphocyte cultures. Mutat Res. 1993 Apr;286(2):321–330. doi: 10.1016/0027-5107(93)90197-n. [DOI] [PubMed] [Google Scholar]
- Holmberg K., Meijer A. E., Auer G., Lambert B. O. Delayed chromosomal instability in human T-lymphocyte clones exposed to ionizing radiation. Int J Radiat Biol. 1995 Sep;68(3):245–255. doi: 10.1080/09553009514551171. [DOI] [PubMed] [Google Scholar]
- Ishiguro K., Schwartz E. L., Sartorelli A. C. Characterization of the metabolic forms of 6-thioguanine responsible for cytotoxicity and induction of differentiation of HL-60 acute promyelocytic leukemia cells. J Cell Physiol. 1984 Nov;121(2):383–390. doi: 10.1002/jcp.1041210216. [DOI] [PubMed] [Google Scholar]
- Jaffe D. R., Williamson J. F., Bowden G. T. Ionizing radiation enhances malignant progression of mouse skin tumors. Carcinogenesis. 1987 Nov;8(11):1753–1755. doi: 10.1093/carcin/8.11.1753. [DOI] [PubMed] [Google Scholar]
- Kaden D., Gadi I. K., Bardwell L., Gelman R., Sager R. Spontaneous mutation rates of tumorigenic and nontumorigenic Chinese hamster embryo fibroblast cell lines. Cancer Res. 1989 Jun 15;49(12):3374–3379. [PubMed] [Google Scholar]
- Kadhim M. A., Lorimore S. A., Hepburn M. D., Goodhead D. T., Buckle V. J., Wright E. G. Alpha-particle-induced chromosomal instability in human bone marrow cells. Lancet. 1994 Oct 8;344(8928):987–988. doi: 10.1016/s0140-6736(94)91643-8. [DOI] [PubMed] [Google Scholar]
- Kadhim M. A., Lorimore S. A., Townsend K. M., Goodhead D. T., Buckle V. J., Wright E. G. Radiation-induced genomic instability: delayed cytogenetic aberrations and apoptosis in primary human bone marrow cells. Int J Radiat Biol. 1995 Mar;67(3):287–293. doi: 10.1080/09553009514550341. [DOI] [PubMed] [Google Scholar]
- Kadhim M. A., Macdonald D. A., Goodhead D. T., Lorimore S. A., Marsden S. J., Wright E. G. Transmission of chromosomal instability after plutonium alpha-particle irradiation. Nature. 1992 Feb 20;355(6362):738–740. doi: 10.1038/355738a0. [DOI] [PubMed] [Google Scholar]
- Kallioniemi A., Kallioniemi O. P., Sudar D., Rutovitz D., Gray J. W., Waldman F., Pinkel D. Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science. 1992 Oct 30;258(5083):818–821. doi: 10.1126/science.1359641. [DOI] [PubMed] [Google Scholar]
- Kano Y., Little J. B. Mechanisms of human cell neoplastic transformation: relationship of specific abnormal clone formation to prolonged lifespan in X-irradiated human diploid fibroblasts. Int J Cancer. 1985 Sep 15;36(3):407–413. [PubMed] [Google Scholar]
- Kano Y., Little J. B. Site-specific chromosomal rearrangements induced in human diploid cells by x-irradiation. Cytogenet Cell Genet. 1986;41(1):22–29. doi: 10.1159/000132191. [DOI] [PubMed] [Google Scholar]
- Kennedy A. R., Cairns J., Little J. B. Timing of the steps in transformation of C3H 10T 1/2 cells by X-irradiation. Nature. 1984 Jan 5;307(5946):85–86. doi: 10.1038/307085a0. [DOI] [PubMed] [Google Scholar]
- Kennedy A. R. Is there a critical target gene for the first step in carcinogenesis? Environ Health Perspect. 1991 Jun;93:199–203. doi: 10.1289/ehp.9193199. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kronenberg A., Little J. B. Molecular characterization of thymidine kinase mutants of human cells induced by densely ionizing radiation. Mutat Res. 1989 Apr;211(2):215–224. doi: 10.1016/0027-5107(89)90004-3. [DOI] [PubMed] [Google Scholar]
- Kronenberg A. Radiation-induced genomic instability. Int J Radiat Biol. 1994 Nov;66(5):603–609. doi: 10.1080/09553009414551691. [DOI] [PubMed] [Google Scholar]
- Lasko D., Cavenee W., Nordenskjöld M. Loss of constitutional heterozygosity in human cancer. Annu Rev Genet. 1991;25:281–314. doi: 10.1146/annurev.ge.25.120191.001433. [DOI] [PubMed] [Google Scholar]
- Li C. Y., Yandell D. W., Little J. B. Molecular mechanisms of spontaneous and induced loss of heterozygosity in human cells in vitro. Somat Cell Mol Genet. 1992 Jan;18(1):77–87. doi: 10.1007/BF01233450. [DOI] [PubMed] [Google Scholar]
- Li I. C., Wu S. C., Fu J., Chu E. H. A deterministic approach for the estimation of mutation rates in cultured mammalian cells. Mutat Res. 1985 Mar;149(1):127–132. doi: 10.1016/0027-5107(85)90017-x. [DOI] [PubMed] [Google Scholar]
- Liber H. L., Thilly W. G. Mutation assay at the thymidine kinase locus in diploid human lymphoblasts. Mutat Res. 1982 Jun;94(2):467–485. doi: 10.1016/0027-5107(82)90308-6. [DOI] [PubMed] [Google Scholar]
- Liber H. L., Yandell D. W., Little J. B. A comparison of mutation induction at the tk and hprt loci in human lymphoblastoid cells; quantitative differences are due to an additional class of mutations at the autosomal tk locus. Mutat Res. 1989 Feb;216(1):9–17. doi: 10.1016/0165-1161(89)90018-6. [DOI] [PubMed] [Google Scholar]
- Loeb L. A. Mutator phenotype may be required for multistage carcinogenesis. Cancer Res. 1991 Jun 15;51(12):3075–3079. [PubMed] [Google Scholar]
- Marder B. A., Morgan W. F. Delayed chromosomal instability induced by DNA damage. Mol Cell Biol. 1993 Nov;13(11):6667–6677. doi: 10.1128/mcb.13.11.6667. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Martins M. B., Sabatier L., Ricoul M., Pinton A., Dutrillaux B. Specific chromosome instability induced by heavy ions: a step towards transformation of human fibroblasts? Mutat Res. 1993 Feb;285(2):229–237. doi: 10.1016/0027-5107(93)90111-r. [DOI] [PubMed] [Google Scholar]
- McClintock B. The significance of responses of the genome to challenge. Science. 1984 Nov 16;226(4676):792–801. doi: 10.1126/science.15739260. [DOI] [PubMed] [Google Scholar]
- McClintock B. The Stability of Broken Ends of Chromosomes in Zea Mays. Genetics. 1941 Mar;26(2):234–282. doi: 10.1093/genetics/26.2.234. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Modrich P. Mismatch repair, genetic stability, and cancer. Science. 1994 Dec 23;266(5193):1959–1960. doi: 10.1126/science.7801122. [DOI] [PubMed] [Google Scholar]
- Morgan C. J., Chawdry R. N., Smith A. R., Siravo-Sagraves G., Trewyn R. W. 6-Thioguanine-induced growth arrest in 6-mercaptopurine-resistant human leukemia cells. Cancer Res. 1994 Oct 15;54(20):5387–5393. [PubMed] [Google Scholar]
- Mulcahy R. T., Gould M. N., Clifton K. H. Radiogenic initiation of thyroid cancer: a common cellular event. Int J Radiat Biol Relat Stud Phys Chem Med. 1984 May;45(5):419–426. doi: 10.1080/09553008414550621. [DOI] [PubMed] [Google Scholar]
- Murnane J. P. Role of induced genetic instability in the mutagenic effects of chemicals and radiation. Mutat Res. 1996 Jan;367(1):11–23. [PubMed] [Google Scholar]
- Müller H., Scott R. Hereditary conditions in which the loss of heterozygosity may be important. Mutat Res. 1992 Dec 1;284(1):15–24. doi: 10.1016/0027-5107(92)90021-s. [DOI] [PubMed] [Google Scholar]
- Nelson S. L., Giver C. R., Grosovsky A. J. Spectrum of X-ray-induced mutations in the human hprt gene. Carcinogenesis. 1994 Mar;15(3):495–502. doi: 10.1093/carcin/15.3.495. [DOI] [PubMed] [Google Scholar]
- Nelson S. L., Jones I. M., Fuscoe J. C., Burkhart-Schultz K., Grosovsky A. J. Mapping the end points of large deletions affecting the hprt locus in human peripheral blood cells and cell lines. Radiat Res. 1995 Jan;141(1):2–10. [PubMed] [Google Scholar]
- Nelson S. L., Parks K. K., Grosovsky A. J. Ionizing radiation signature mutations in human cell mutants induced by low-dose exposures. Mutagenesis. 1996 May;11(3):275–279. doi: 10.1093/mutage/11.3.275. [DOI] [PubMed] [Google Scholar]
- Nowell P. C. The clonal evolution of tumor cell populations. Science. 1976 Oct 1;194(4260):23–28. doi: 10.1126/science.959840. [DOI] [PubMed] [Google Scholar]
- Parsons R., Li G. M., Longley M. J., Fang W. H., Papadopoulos N., Jen J., de la Chapelle A., Kinzler K. W., Vogelstein B., Modrich P. Hypermutability and mismatch repair deficiency in RER+ tumor cells. Cell. 1993 Dec 17;75(6):1227–1236. doi: 10.1016/0092-8674(93)90331-j. [DOI] [PubMed] [Google Scholar]
- Qumsiyeh M. B. Impact of rearrangements on function and position of chromosomes in the interphase nucleus and on human genetic disorders. Chromosome Res. 1995 Dec;3(8):455–465. doi: 10.1007/BF00713959. [DOI] [PubMed] [Google Scholar]
- Sabatier L., Dutrillaux B., Martin M. B. Chromosomal instability. Nature. 1992 Jun 18;357(6379):548–548. doi: 10.1038/357548a0. [DOI] [PubMed] [Google Scholar]
- Seshadri R., Kutlaca R. J., Trainor K., Matthews C., Morley A. A. Mutation rate of normal and malignant human lymphocytes. Cancer Res. 1987 Jan 15;47(2):407–409. [PubMed] [Google Scholar]
- Smith K. A., Gorman P. A., Stark M. B., Groves R. P., Stark G. R. Distinctive chromosomal structures are formed very early in the amplification of CAD genes in Syrian hamster cells. Cell. 1990 Dec 21;63(6):1219–1227. doi: 10.1016/0092-8674(90)90417-d. [DOI] [PubMed] [Google Scholar]
- Smith L. E., Grosovsky A. J. Genetic instability on chromosome 16 in a human B lymphoblastoid cell line. Somat Cell Mol Genet. 1993 Nov;19(6):515–527. doi: 10.1007/BF01233379. [DOI] [PubMed] [Google Scholar]
- Solomon E., Borrow J., Goddard A. D. Chromosome aberrations and cancer. Science. 1991 Nov 22;254(5035):1153–1160. doi: 10.1126/science.1957167. [DOI] [PubMed] [Google Scholar]
- Tagger A. Y., Damen J. E., Greenberg A. H., Wright J. A. Lack of correlation between deoxyribonucleotide pool sizes, spontaneous mutation rates and malignant potential in Chinese hamster ovary cells. J Cancer Res Clin Oncol. 1989;115(5):429–434. doi: 10.1007/BF00393331. [DOI] [PubMed] [Google Scholar]
- Toledo F., Le Roscouet D., Buttin G., Debatisse M. Co-amplified markers alternate in megabase long chromosomal inverted repeats and cluster independently in interphase nuclei at early steps of mammalian gene amplification. EMBO J. 1992 Jul;11(7):2665–2673. doi: 10.1002/j.1460-2075.1992.tb05332.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Trask B. J., Hamlin J. L. Early dihydrofolate reductase gene amplification events in CHO cells usually occur on the same chromosome arm as the original locus. Genes Dev. 1989 Dec;3(12A):1913–1925. doi: 10.1101/gad.3.12a.1913. [DOI] [PubMed] [Google Scholar]
- Wallrath L. L., Elgin S. C. Position effect variegation in Drosophila is associated with an altered chromatin structure. Genes Dev. 1995 May 15;9(10):1263–1277. doi: 10.1101/gad.9.10.1263. [DOI] [PubMed] [Google Scholar]
- Windle B. E., Wahl G. M. Molecular dissection of mammalian gene amplification: new mechanistic insights revealed by analyses of very early events. Mutat Res. 1992 May;276(3):199–224. doi: 10.1016/0165-1110(92)90009-x. [DOI] [PubMed] [Google Scholar]
- Windle B., Draper B. W., Yin Y. X., O'Gorman S., Wahl G. M. A central role for chromosome breakage in gene amplification, deletion formation, and amplicon integration. Genes Dev. 1991 Feb;5(2):160–174. doi: 10.1101/gad.5.2.160. [DOI] [PubMed] [Google Scholar]
- Xia F., Amundson S. A., Nickoloff J. A., Liber H. L. Different capacities for recombination in closely related human lymphoblastoid cell lines with different mutational responses to X-irradiation. Mol Cell Biol. 1994 Sep;14(9):5850–5857. doi: 10.1128/mcb.14.9.5850. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yandell D. W., Dryja T. P., Little J. B. Molecular genetic analysis of recessive mutations at a heterozygous autosomal locus in human cells. Mutat Res. 1990 Mar;229(1):89–102. doi: 10.1016/0027-5107(90)90011-r. [DOI] [PubMed] [Google Scholar]
- Yandell D. W., Dryja T. P., Little J. B. Somatic mutations at a heterozygous autosomal locus in human cells occur more frequently by allele loss than by intragenic structural alterations. Somat Cell Mol Genet. 1986 May;12(3):255–263. doi: 10.1007/BF01570784. [DOI] [PubMed] [Google Scholar]