Abstract
The transcription factor hepatocyte nuclear factor 4 (HNF4) is an orphan member of the nuclear receptor superfamily expressed in mammals in liver, kidney, and the digestive tract. Recently, we isolated the Xenopus homolog of mammalian HNF4 and revealed that it is not only a tissue-specific transcription factor but also a maternal component of the Xenopus egg and distributed within an animal-to-vegetal gradient. We speculate that this gradient cooperates with the vegetally localized embryonic induction factor activin A to activate expression of HNF1alpha, a tissue-specific transcription factor with an expression pattern overlapping that of HNF4. We have now identified a second Xenopus HNF4 gene, which is more distantly related to mammalian HNF4 than the previously isolated gene. This new gene was named HNF4beta to distinguish it from the known HNF4 gene, which is now called HNF4alpha. By reverse transcription-PCR, we detected within the 5' untranslated region of HNF4beta two splice variants (HNF4beta2 and HNF4beta3) with additional exons, which seem to affect RNA stability. HNF4beta is a functional transcription factor acting sequence specifically on HNF4 binding sites known for HNF4alpha, but it seems to have a lower DNA binding activity and is a weaker transactivator than the alpha isoform. Furthermore, the two factors differ with respect to tissue distribution in adult frogs: whereas HNF4alpha is expressed in liver and kidney, HNF4beta is expressed in addition in stomach, intestine, lung, ovary, and testis. Both factors are maternal proteins and present at constant levels throughout embryogenesis. However, using reverse transcription-PCR, we found the RNA levels to change substantially: whereas HNF4alpha is expressed early during oogenesis and is absent in the egg, HNF4beta is first detected in the latest stage of oogenesis, and transcripts are present in the egg and early cleavage stages. Furthermore, zygotic HNF4alpha transcripts appear in early gastrula and accumulate during further embryogenesis, whereas HNF4beta mRNA transiently appears during gastrulation before it accumulates again at the tail bud stage. All of these distinct characteristics of the newly identified HNF4 protein imply that the alpha and beta isoform have different functions in development and in adult tissues.
Full Text
The Full Text of this article is available as a PDF (353.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bartkowski S., Zapp D., Weber H., Eberle G., Zoidl C., Senkel S., Klein-Hitpass L., Ryffel G. U. Developmental regulation and tissue distribution of the liver transcription factor LFB1 (HNF1) in Xenopus laevis. Mol Cell Biol. 1993 Jan;13(1):421–431. doi: 10.1128/mcb.13.1.421. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bassez T., Paris J., Omilli F., Dorel C., Osborne H. B. Post-transcriptional regulation of ornithine decarboxylase in Xenopus laevis oocytes. Development. 1990 Nov;110(3):955–962. doi: 10.1242/dev.110.3.955. [DOI] [PubMed] [Google Scholar]
- Bouwmeester T., van Wijk I., Wedlich D., Pieler T. Functional aspects of B-Myb in early Xenopus development. Oncogene. 1994 Apr;9(4):1029–1038. [PubMed] [Google Scholar]
- Cereghini S. Liver-enriched transcription factors and hepatocyte differentiation. FASEB J. 1996 Feb;10(2):267–282. [PubMed] [Google Scholar]
- Chen W. S., Manova K., Weinstein D. C., Duncan S. A., Plump A. S., Prezioso V. R., Bachvarova R. F., Darnell J. E., Jr Disruption of the HNF-4 gene, expressed in visceral endoderm, leads to cell death in embryonic ectoderm and impaired gastrulation of mouse embryos. Genes Dev. 1994 Oct 15;8(20):2466–2477. doi: 10.1101/gad.8.20.2466. [DOI] [PubMed] [Google Scholar]
- Costa R. H., Grayson D. R., Darnell J. E., Jr Multiple hepatocyte-enriched nuclear factors function in the regulation of transthyretin and alpha 1-antitrypsin genes. Mol Cell Biol. 1989 Apr;9(4):1415–1425. doi: 10.1128/mcb.9.4.1415. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Curtis D., Lehmann R., Zamore P. D. Translational regulation in development. Cell. 1995 Apr 21;81(2):171–178. doi: 10.1016/0092-8674(95)90325-9. [DOI] [PubMed] [Google Scholar]
- Drewes T., Clairmont A., Klein-Hitpass L., Ryffel G. U. Estrogen-inducible derivatives of hepatocyte nuclear factor-4, hepatocyte nuclear factor-3 and liver factor B1 are differently affected by pure and partial antiestrogens. Eur J Biochem. 1994 Oct 1;225(1):441–448. doi: 10.1111/j.1432-1033.1994.00441.x. [DOI] [PubMed] [Google Scholar]
- Drewes T., Senkel S., Holewa B., Ryffel G. U. Human hepatocyte nuclear factor 4 isoforms are encoded by distinct and differentially expressed genes. Mol Cell Biol. 1996 Mar;16(3):925–931. doi: 10.1128/mcb.16.3.925. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Holewa B., Strandmann E. P., Zapp D., Lorenz P., Ryffel G. U. Transcriptional hierarchy in Xenopus embryogenesis: HNF4 a maternal factor involved in the developmental activation of the gene encoding the tissue specific transcription factor HNF1 alpha (LFB1). Mech Dev. 1996 Jan;54(1):45–57. doi: 10.1016/0925-4773(95)00460-2. [DOI] [PubMed] [Google Scholar]
- Isaacs H. V., Tannahill D., Slack J. M. Expression of a novel FGF in the Xenopus embryo. A new candidate inducing factor for mesoderm formation and anteroposterior specification. Development. 1992 Mar;114(3):711–720. doi: 10.1242/dev.114.3.711. [DOI] [PubMed] [Google Scholar]
- Kindy M. S., Verma I. M. Developmental expression of the Xenopus laevis fos protooncogene. Cell Growth Differ. 1990 Jan;1(1):27–37. [PubMed] [Google Scholar]
- Kinoshita N., Minshull J., Kirschner M. W. The identification of two novel ligands of the FGF receptor by a yeast screening method and their activity in Xenopus development. Cell. 1995 Nov 17;83(4):621–630. doi: 10.1016/0092-8674(95)90102-7. [DOI] [PubMed] [Google Scholar]
- Kugler W., Kaling M., Ross K., Wagner U., Ryffel G. U. BAP, a rat liver protein that activates transcription through a promoter element with similarity to the USF/MLTF binding site. Nucleic Acids Res. 1990 Dec 11;18(23):6943–6951. doi: 10.1093/nar/18.23.6943. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laudet V., Hänni C., Coll J., Catzeflis F., Stéhelin D. Evolution of the nuclear receptor gene superfamily. EMBO J. 1992 Mar;11(3):1003–1013. doi: 10.1002/j.1460-2075.1992.tb05139.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee M. S., Sem D. S., Kliewer S. A., Provencal J., Evans R. M., Wright P. E. NMR assignments and secondary structure of the retinoid X receptor alpha DNA-binding domain. Evidence for the novel C-terminal helix. Eur J Biochem. 1994 Sep 1;224(2):639–650. doi: 10.1111/j.1432-1033.1994.00639.x. [DOI] [PubMed] [Google Scholar]
- Mangelsdorf D. J., Thummel C., Beato M., Herrlich P., Schütz G., Umesono K., Blumberg B., Kastner P., Mark M., Chambon P. The nuclear receptor superfamily: the second decade. Cell. 1995 Dec 15;83(6):835–839. doi: 10.1016/0092-8674(95)90199-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Metzger S., Halaas J. L., Breslow J. L., Sladek F. M. Orphan receptor HNF-4 and bZip protein C/EBP alpha bind to overlapping regions of the apolipoprotein B gene promoter and synergistically activate transcription. J Biol Chem. 1993 Aug 5;268(22):16831–16838. [PubMed] [Google Scholar]
- Richardson J. C., Garcia Estrabot A. M., Woodland H. R. XrelA, a Xenopus maternal and zygotic homologue of the p65 subunit of NF-kappa B. Characterisation of transcriptional properties in the developing embryo and identification of a negative interference mutant. Mech Dev. 1994 Feb;45(2):173–189. doi: 10.1016/0925-4773(94)90031-0. [DOI] [PubMed] [Google Scholar]
- Slack J. M. Inducing factors in Xenopus early embryos. Curr Biol. 1994 Feb 1;4(2):116–126. doi: 10.1016/s0960-9822(94)00027-8. [DOI] [PubMed] [Google Scholar]
- Sladek F. M., Zhong W. M., Lai E., Darnell J. E., Jr Liver-enriched transcription factor HNF-4 is a novel member of the steroid hormone receptor superfamily. Genes Dev. 1990 Dec;4(12B):2353–2365. doi: 10.1101/gad.4.12b.2353. [DOI] [PubMed] [Google Scholar]
- Stiegler P., Wolff C. M., Meyer D., Sénan F., Durliat M., Hourdry J., Befort N., Remy P. The c-ets-1 proto-oncogenes in Xenopus laevis: expression during oogenesis and embryogenesis. Mech Dev. 1993 May;41(2-3):163–174. doi: 10.1016/0925-4773(93)90046-z. [DOI] [PubMed] [Google Scholar]
- Taraviras S., Monaghan A. P., Schütz G., Kelsey G. Characterization of the mouse HNF-4 gene and its expression during mouse embryogenesis. Mech Dev. 1994 Nov;48(2):67–79. doi: 10.1016/0925-4773(94)90017-5. [DOI] [PubMed] [Google Scholar]
- Weber H., Holewa B., Jones E. A., Ryffel G. U. Mesoderm and endoderm differentiation in animal cap explants: identification of the HNF4-binding site as an activin A responsive element in the Xenopus HNF1alpha promoter. Development. 1996 Jun;122(6):1975–1984. doi: 10.1242/dev.122.6.1975. [DOI] [PubMed] [Google Scholar]
- Wilson R., Ainscough R., Anderson K., Baynes C., Berks M., Bonfield J., Burton J., Connell M., Copsey T., Cooper J. 2.2 Mb of contiguous nucleotide sequence from chromosome III of C. elegans. Nature. 1994 Mar 3;368(6466):32–38. doi: 10.1038/368032a0. [DOI] [PubMed] [Google Scholar]
- Zapp D., Bartkowski S., Holewa B., Zoidl C., Klein-Hitpass L., Ryffel G. U. Elements and factors involved in tissue-specific and embryonic expression of the liver transcription factor LFB1 in Xenopus laevis. Mol Cell Biol. 1993 Oct;13(10):6416–6426. doi: 10.1128/mcb.13.10.6416. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhong W., Mirkovitch J., Darnell J. E., Jr Tissue-specific regulation of mouse hepatocyte nuclear factor 4 expression. Mol Cell Biol. 1994 Nov;14(11):7276–7284. doi: 10.1128/mcb.14.11.7276. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhong W., Sladek F. M., Darnell J. E., Jr The expression pattern of a Drosophila homolog to the mouse transcription factor HNF-4 suggests a determinative role in gut formation. EMBO J. 1993 Feb;12(2):537–544. doi: 10.1002/j.1460-2075.1993.tb05685.x. [DOI] [PMC free article] [PubMed] [Google Scholar]