Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1997 Feb;17(2):778–788. doi: 10.1128/mcb.17.2.778

Evidence for the involvement of mouse heat shock factor 1 in the atypical expression of the HSP70.1 heat shock gene during mouse zygotic genome activation.

E Christians 1, E Michel 1, P Adenot 1, V Mezger 1, M Rallu 1, M Morange 1, J P Renard 1
PMCID: PMC231804  PMID: 9001232

Abstract

The mouse HSP70.1 gene, which codes for a heat shock protein (hsp70), is highly transcribed at the onset of zygotic genome activation (ZGA). This expression, which occurs in the absence of stress, is then repressed. It has been claimed that this gene does not exhibit a stress response until the blastocyst stage. The promoter of HSP70.1 contains four heat shock element (HSE) boxes which are the binding sites of heat shock transcription factors (HSF). We have been studying the presence and localization of the mouse HSFs, mHSF1 and mHSF2, at different stages of embryo development. We show that mHSF1 is already present at the one-cell stage and concentrated in the nucleus. Moreover, by mutagenizing HSE sequences and performing competition experiments (in transgenic embryos with the HSP70.1 promoter inserted before a reporter gene), we show that, in contrast with previous findings, HSE boxes are involved in this spontaneous activation. Therefore, we suggest that HSF1 and HSE are important in this transient expression at the two-cell stage and that the absence of typical inducibility at this early stage of development results mainly from the high level of spontaneous transcription of this gene during the ZGA.

Full Text

The Full Text of this article is available as a PDF (534.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abravaya K., Myers M. P., Murphy S. P., Morimoto R. I. The human heat shock protein hsp70 interacts with HSF, the transcription factor that regulates heat shock gene expression. Genes Dev. 1992 Jul;6(7):1153–1164. doi: 10.1101/gad.6.7.1153. [DOI] [PubMed] [Google Scholar]
  2. Becker P. B., Rabindran S. K., Wu C. Heat shock-regulated transcription in vitro from a reconstituted chromatin template. Proc Natl Acad Sci U S A. 1991 May 15;88(10):4109–4113. doi: 10.1073/pnas.88.10.4109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bensaude O., Babinet C., Morange M., Jacob F. Heat shock proteins, first major products of zygotic gene activity in mouse embryo. Nature. 1983 Sep 22;305(5932):331–333. doi: 10.1038/305331a0. [DOI] [PubMed] [Google Scholar]
  4. Bevilacqua A., Kinnunen L. H., Bevilacqua S., Mangia F. Stage-specific regulation of murine Hsp68 gene promoter in preimplantation mouse embryos. Dev Biol. 1995 Aug;170(2):467–478. doi: 10.1006/dbio.1995.1230. [DOI] [PubMed] [Google Scholar]
  5. Bevilacqua A., Mangia F. Activity of a microinjected inducible murine hsp68 gene promoter depends on plasmid configuration and the presence of heat shock elements in mouse dictyate oocytes but not in two-cell embryos. Dev Genet. 1993;14(2):92–102. doi: 10.1002/dvg.1020140203. [DOI] [PubMed] [Google Scholar]
  6. Blangy A., Léopold P., Vidal F., Rassoulzadegan M., Cuzin F. Recognition of the CDEI motif GTCACATG by mouse nuclear proteins and interference with the early development of the mouse embryo. Nucleic Acids Res. 1991 Dec;19(25):7243–7250. doi: 10.1093/nar/19.25.7243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Choi H. S., Li B., Lin Z., Huang E., Liu A. Y. cAMP and cAMP-dependent protein kinase regulate the human heat shock protein 70 gene promoter activity. J Biol Chem. 1991 Jun 25;266(18):11858–11865. [PubMed] [Google Scholar]
  8. Christians E., Campion E., Thompson E. M., Renard J. P. Expression of the HSP 70.1 gene, a landmark of early zygotic activity in the mouse embryo, is restricted to the first burst of transcription. Development. 1995 Jan;121(1):113–122. doi: 10.1242/dev.121.1.113. [DOI] [PubMed] [Google Scholar]
  9. Clos J., Westwood J. T., Becker P. B., Wilson S., Lambert K., Wu C. Molecular cloning and expression of a hexameric Drosophila heat shock factor subject to negative regulation. Cell. 1990 Nov 30;63(5):1085–1097. doi: 10.1016/0092-8674(90)90511-c. [DOI] [PubMed] [Google Scholar]
  10. Conover J. C., Temeles G. L., Zimmermann J. W., Burke B., Schultz R. M. Stage-specific expression of a family of proteins that are major products of zygotic gene activation in the mouse embryo. Dev Biol. 1991 Apr;144(2):392–404. doi: 10.1016/0012-1606(91)90431-2. [DOI] [PubMed] [Google Scholar]
  11. Cunniff N. F., Morgan W. D. Analysis of heat shock element recognition by saturation mutagenesis of the human HSP70.1 gene promoter. J Biol Chem. 1993 Apr 15;268(11):8317–8324. [PubMed] [Google Scholar]
  12. Fiorenza M. T., Farkas T., Dissing M., Kolding D., Zimarino V. Complex expression of murine heat shock transcription factors. Nucleic Acids Res. 1995 Feb 11;23(3):467–474. doi: 10.1093/nar/23.3.467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Goodson M. L., Park-Sarge O. K., Sarge K. D. Tissue-dependent expression of heat shock factor 2 isoforms with distinct transcriptional activities. Mol Cell Biol. 1995 Oct;15(10):5288–5293. doi: 10.1128/mcb.15.10.5288. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Goodson M. L., Sarge K. D. Regulated expression of heat shock factor 1 isoforms with distinct leucine zipper arrays via tissue-dependent alternative splicing. Biochem Biophys Res Commun. 1995 Jun 26;211(3):943–949. doi: 10.1006/bbrc.1995.1903. [DOI] [PubMed] [Google Scholar]
  15. Hahnel A. C., Gifford D. J., Heikkila J. J., Schultz G. A. Expression of the major heat shock protein (hsp 70) family during early mouse embryo development. Teratog Carcinog Mutagen. 1986;6(6):493–510. doi: 10.1002/tcm.1770060603. [DOI] [PubMed] [Google Scholar]
  16. Harel-Bellan A., Brini A. T., Ferris D. K., Robin P., Farrar W. L. In situ detection of a heat-shock regulatory element binding protein using a soluble synthetic enhancer sequence. Nucleic Acids Res. 1989 Jun 12;17(11):4077–4087. doi: 10.1093/nar/17.11.4077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Heikkila J. J., Browder L. W., Gedamu L., Nickells R. W., Schultz G. A. Heat-shock gene expression in animal embryonic systems. Can J Genet Cytol. 1986 Dec;28(6):1093–1105. doi: 10.1139/g86-153. [DOI] [PubMed] [Google Scholar]
  18. Ho S. N., Hunt H. D., Horton R. M., Pullen J. K., Pease L. R. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene. 1989 Apr 15;77(1):51–59. doi: 10.1016/0378-1119(89)90358-2. [DOI] [PubMed] [Google Scholar]
  19. Hunt C., Calderwood S. Characterization and sequence of a mouse hsp70 gene and its expression in mouse cell lines. Gene. 1990 Mar 15;87(2):199–204. doi: 10.1016/0378-1119(90)90302-8. [DOI] [PubMed] [Google Scholar]
  20. Johnston R. N., Kucey B. L. Competitive inhibition of hsp70 gene expression causes thermosensitivity. Science. 1988 Dec 16;242(4885):1551–1554. doi: 10.1126/science.3201244. [DOI] [PubMed] [Google Scholar]
  21. Kim D., Ouyang H., Yang S. H., Nussenzweig A., Burgman P., Li G. C. A constitutive heat shock element-binding factor is immunologically identical to the Ku autoantigen. J Biol Chem. 1995 Jun 23;270(25):15277–15284. doi: 10.1074/jbc.270.25.15277. [DOI] [PubMed] [Google Scholar]
  22. Kothary R., Clapoff S., Darling S., Perry M. D., Moran L. A., Rossant J. Inducible expression of an hsp68-lacZ hybrid gene in transgenic mice. Development. 1989 Apr;105(4):707–714. doi: 10.1242/dev.105.4.707. [DOI] [PubMed] [Google Scholar]
  23. Landsberger N., Ranjan M., Almouzni G., Stump D., Wolffe A. P. The heat shock response in Xenopus oocytes, embryos, and somatic cells: a regulatory role for chromatin. Dev Biol. 1995 Jul;170(1):62–74. doi: 10.1006/dbio.1995.1195. [DOI] [PubMed] [Google Scholar]
  24. Landsberger N., Wolffe A. P. Role of chromatin and Xenopus laevis heat shock transcription factor in regulation of transcription from the X. laevis hsp70 promoter in vivo. Mol Cell Biol. 1995 Nov;15(11):6013–6024. doi: 10.1128/mcb.15.11.6013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Majumder S., Miranda M., DePamphilis M. L. Analysis of gene expression in mouse preimplantation embryos demonstrates that the primary role of enhancers is to relieve repression of promoters. EMBO J. 1993 Mar;12(3):1131–1140. doi: 10.1002/j.1460-2075.1993.tb05754.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Manejwala F. M., Logan C. Y., Schultz R. M. Regulation of hsp70 mRNA levels during oocyte maturation and zygotic gene activation in the mouse. Dev Biol. 1991 Apr;144(2):301–308. doi: 10.1016/0012-1606(91)90423-z. [DOI] [PubMed] [Google Scholar]
  27. Martínez-Balbás M. A., Dey A., Rabindran S. K., Ozato K., Wu C. Displacement of sequence-specific transcription factors from mitotic chromatin. Cell. 1995 Oct 6;83(1):29–38. doi: 10.1016/0092-8674(95)90231-7. [DOI] [PubMed] [Google Scholar]
  28. Mezger V., Rallu M., Morimoto R. I., Morange M., Renard J. P. Heat shock factor 2-like activity in mouse blastocysts. Dev Biol. 1994 Dec;166(2):819–822. doi: 10.1006/dbio.1994.1361. [DOI] [PubMed] [Google Scholar]
  29. Mezger V., Renard J. P., Christians E., Morange M. Detection of heat shock element-binding activities by gel shift assay during mouse preimplantation development. Dev Biol. 1994 Oct;165(2):627–638. doi: 10.1006/dbio.1994.1281. [DOI] [PubMed] [Google Scholar]
  30. Morange M., Diu A., Bensaude O., Babinet C. Altered expression of heat shock proteins in embryonal carcinoma and mouse early embryonic cells. Mol Cell Biol. 1984 Apr;4(4):730–735. doi: 10.1128/mcb.4.4.730. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Muller W. U., Li G. C., Goldstein L. S. Heat does not induce synthesis of heat shock proteins or thermotolerance in the earliest stage of mouse embryo development. Int J Hyperthermia. 1985 Jan-Mar;1(1):97–102. doi: 10.3109/02656738509029277. [DOI] [PubMed] [Google Scholar]
  32. Murphy S. P., Gorzowski J. J., Sarge K. D., Phillips B. Characterization of constitutive HSF2 DNA-binding activity in mouse embryonal carcinoma cells. Mol Cell Biol. 1994 Aug;14(8):5309–5317. doi: 10.1128/mcb.14.8.5309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Nakai A., Kawazoe Y., Tanabe M., Nagata K., Morimoto R. I. The DNA-binding properties of two heat shock factors, HSF1 and HSF3, are induced in the avian erythroblast cell line HD6. Mol Cell Biol. 1995 Oct;15(10):5268–5278. doi: 10.1128/mcb.15.10.5268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Nakai A., Morimoto R. I. Characterization of a novel chicken heat shock transcription factor, heat shock factor 3, suggests a new regulatory pathway. Mol Cell Biol. 1993 Apr;13(4):1983–1997. doi: 10.1128/mcb.13.4.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Parsell D. A., Lindquist S. The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annu Rev Genet. 1993;27:437–496. doi: 10.1146/annurev.ge.27.120193.002253. [DOI] [PubMed] [Google Scholar]
  36. Sarge K. D., Murphy S. P., Morimoto R. I. Activation of heat shock gene transcription by heat shock factor 1 involves oligomerization, acquisition of DNA-binding activity, and nuclear localization and can occur in the absence of stress. Mol Cell Biol. 1993 Mar;13(3):1392–1407. doi: 10.1128/mcb.13.3.1392. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Sarge K. D., Zimarino V., Holm K., Wu C., Morimoto R. I. Cloning and characterization of two mouse heat shock factors with distinct inducible and constitutive DNA-binding ability. Genes Dev. 1991 Oct;5(10):1902–1911. doi: 10.1101/gad.5.10.1902. [DOI] [PubMed] [Google Scholar]
  38. Scharf K. D., Rose S., Zott W., Schöffl F., Nover L., Schöff F. Three tomato genes code for heat stress transcription factors with a region of remarkable homology to the DNA-binding domain of the yeast HSF. EMBO J. 1990 Dec;9(13):4495–4501. doi: 10.1002/j.1460-2075.1990.tb07900.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Schuetz T. J., Gallo G. J., Sheldon L., Tempst P., Kingston R. E. Isolation of a cDNA for HSF2: evidence for two heat shock factor genes in humans. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):6911–6915. doi: 10.1073/pnas.88.16.6911. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Sheldon L. A., Kingston R. E. Hydrophobic coiled-coil domains regulate the subcellular localization of human heat shock factor 2. Genes Dev. 1993 Aug;7(8):1549–1558. doi: 10.1101/gad.7.8.1549. [DOI] [PubMed] [Google Scholar]
  41. Shuldiner A. R., Tanner K., Moore C. A., Roth J. RNA template-specific PCR: an improved method that dramatically reduces false positives in RT-PCR. Biotechniques. 1991 Dec;11(6):760–763. [PubMed] [Google Scholar]
  42. Sistonen L., Sarge K. D., Morimoto R. I. Human heat shock factors 1 and 2 are differentially activated and can synergistically induce hsp70 gene transcription. Mol Cell Biol. 1994 Mar;14(3):2087–2099. doi: 10.1128/mcb.14.3.2087. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Thompson E. M., Christians E., Stinnakre M. G., Renard J. P. Scaffold attachment regions stimulate HSP70.1 expression in mouse preimplantation embryos but not in differentiated tissues. Mol Cell Biol. 1994 Jul;14(7):4694–4703. doi: 10.1128/mcb.14.7.4694. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Thompson E. M., Legouy E., Christians E., Renard J. P. Progressive maturation of chromatin structure regulates HSP70.1 gene expression in the preimplantation mouse embryo. Development. 1995 Oct;121(10):3425–3437. doi: 10.1242/dev.121.10.3425. [DOI] [PubMed] [Google Scholar]
  45. Wittig S., Hensse S., Keitel C., Elsner C., Wittig B. Heat shock gene expression is regulated during teratocarcinoma cell differentiation and early embryonic development. Dev Biol. 1983 Apr;96(2):507–514. doi: 10.1016/0012-1606(83)90187-2. [DOI] [PubMed] [Google Scholar]
  46. Worrad D. M., Turner B. M., Schultz R. M. Temporally restricted spatial localization of acetylated isoforms of histone H4 and RNA polymerase II in the 2-cell mouse embryo. Development. 1995 Sep;121(9):2949–2959. doi: 10.1242/dev.121.9.2949. [DOI] [PubMed] [Google Scholar]
  47. Xiao H., Lis J. T. A consensus sequence polymer inhibits in vivo expression of heat shock genes. Mol Cell Biol. 1986 Sep;6(9):3200–3206. doi: 10.1128/mcb.6.9.3200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. de Wet J. R., Wood K. V., DeLuca M., Helinski D. R., Subramani S. Firefly luciferase gene: structure and expression in mammalian cells. Mol Cell Biol. 1987 Feb;7(2):725–737. doi: 10.1128/mcb.7.2.725. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES