Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1997 Feb;17(2):799–808. doi: 10.1128/mcb.17.2.799

Degradation of the Met tyrosine kinase receptor by the ubiquitin-proteasome pathway.

M Jeffers 1, G A Taylor 1, K M Weidner 1, S Omura 1, G F Vande Woude 1
PMCID: PMC231806  PMID: 9001234

Abstract

The Met tyrosine kinase receptor is a widely expressed molecule which mediates pleiotropic cellular responses following activation by its ligand, hepatocyte growth factor/scatter factor (HGF/SF). In this communication we demonstrate that significant Met degradation is induced by HGF/SF and that this degradation can be blocked by lactacystin, an inhibitor of proteasome activity. We also show that Met is rapidly polyubiquitinated in response to ligand and that polyubiquitinated Met molecules, which are normally unstable, are stabilized by lactacystin. Both HGF/SF-induced degradation and polyubiquitination of Met were shown to be dependent on the receptor possessing intact tyrosine kinase activity. Finally, we found that a normally highly labile 55-kDa fragment of the Met receptor is stabilized by lactacystin and demonstrate that it represents a cell-associated remnant that is generated following the ligand-independent proteolytic cleavage of the Met receptor in its extracellular domain. This truncated Met molecule encompasses the kinase domain of the receptor and is itself tyrosine phosphorylated. We conclude that the ubiquitin-proteasome pathway plays a significant role in the degradation of the Met tyrosine kinase receptor as directed by ligand-dependent and -independent signals. We propose that this proteolytic pathway may be important for averting cellular transformation by desensitizing Met signaling following ligand stimulation and by eliminating potentially oncogenic fragments generated via extracellular cleavage of the Met receptor.

Full Text

The Full Text of this article is available as a PDF (514.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bladt F., Riethmacher D., Isenmann S., Aguzzi A., Birchmeier C. Essential role for the c-met receptor in the migration of myogenic precursor cells into the limb bud. Nature. 1995 Aug 31;376(6543):768–771. doi: 10.1038/376768a0. [DOI] [PubMed] [Google Scholar]
  2. Bottaro D. P., Rubin J. S., Faletto D. L., Chan A. M., Kmiecik T. E., Vande Woude G. F., Aaronson S. A. Identification of the hepatocyte growth factor receptor as the c-met proto-oncogene product. Science. 1991 Feb 15;251(4995):802–804. doi: 10.1126/science.1846706. [DOI] [PubMed] [Google Scholar]
  3. Brinkmann V., Foroutan H., Sachs M., Weidner K. M., Birchmeier W. Hepatocyte growth factor/scatter factor induces a variety of tissue-specific morphogenic programs in epithelial cells. J Cell Biol. 1995 Dec;131(6 Pt 1):1573–1586. doi: 10.1083/jcb.131.6.1573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brizzi M. F., Blechman J. M., Cavalloni G., Givol D., Yarden Y., Pegoraro L. Protein kinase C-dependent release of a functional whole extracellular domain of the mast cell growth factor (MGF) receptor by MGF-dependent human myeloid cells. Oncogene. 1994 Jun;9(6):1583–1589. [PubMed] [Google Scholar]
  5. Bussolino F., Di Renzo M. F., Ziche M., Bocchietto E., Olivero M., Naldini L., Gaudino G., Tamagnone L., Coffer A., Comoglio P. M. Hepatocyte growth factor is a potent angiogenic factor which stimulates endothelial cell motility and growth. J Cell Biol. 1992 Nov;119(3):629–641. doi: 10.1083/jcb.119.3.629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Carlberg K., Tapley P., Haystead C., Rohrschneider L. The role of kinase activity and the kinase insert region in ligand-induced internalization and degradation of the c-fms protein. EMBO J. 1991 Apr;10(4):877–883. doi: 10.1002/j.1460-2075.1991.tb08020.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ciechanover A. The ubiquitin-proteasome proteolytic pathway. Cell. 1994 Oct 7;79(1):13–21. doi: 10.1016/0092-8674(94)90396-4. [DOI] [PubMed] [Google Scholar]
  8. Crepaldi T., Prat M., Giordano S., Medico E., Comoglio P. M. Generation of a truncated hepatocyte growth factor receptor in the endoplasmic reticulum. J Biol Chem. 1994 Jan 21;269(3):1750–1755. [PubMed] [Google Scholar]
  9. Deshaies R. J. Make it or break it: the role of ubiquitin-dependent proteolysis in cellular regulation. Trends Cell Biol. 1995 Nov;5(11):428–434. doi: 10.1016/s0962-8924(00)89102-3. [DOI] [PubMed] [Google Scholar]
  10. Downing J. R., Roussel M. F., Sherr C. J. Ligand and protein kinase C downmodulate the colony-stimulating factor 1 receptor by independent mechanisms. Mol Cell Biol. 1989 Jul;9(7):2890–2896. doi: 10.1128/mcb.9.7.2890. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Escobedo J. A., Barr P. J., Williams L. T. Role of tyrosine kinase and membrane-spanning domains in signal transduction by the platelet-derived growth factor receptor. Mol Cell Biol. 1988 Dec;8(12):5126–5131. doi: 10.1128/mcb.8.12.5126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Faletto D. L., Kaplan D. R., Halverson D. O., Rosen E. M., Vande Woude G. F. Signal transduction in c-met mediated motogenesis. EXS. 1993;65:107–130. [PubMed] [Google Scholar]
  13. Faletto D. L., Tsarfaty I., Kmiecik T. E., Gonzatti M., Suzuki T., Vande Woude G. F. Evidence for non-covalent clusters of the c-met proto-oncogene product. Oncogene. 1992 Jun;7(6):1149–1157. [PubMed] [Google Scholar]
  14. Fenteany G., Standaert R. F., Lane W. S., Choi S., Corey E. J., Schreiber S. L. Inhibition of proteasome activities and subunit-specific amino-terminal threonine modification by lactacystin. Science. 1995 May 5;268(5211):726–731. doi: 10.1126/science.7732382. [DOI] [PubMed] [Google Scholar]
  15. Galcheva-Gargova Z., Theroux S. J., Davis R. J. The epidermal growth factor receptor is covalently linked to ubiquitin. Oncogene. 1995 Dec 21;11(12):2649–2655. [PubMed] [Google Scholar]
  16. Gherardi E., Sharpe M., Lane K., Sirulnik A., Stoker M. Hepatocyte growth factor/scatter factor (HGF/SF), the c-met receptor and the behaviour of epithelial cells. Symp Soc Exp Biol. 1993;47:163–181. [PubMed] [Google Scholar]
  17. Giordano S., Di Renzo M. F., Narsimhan R. P., Cooper C. S., Rosa C., Comoglio P. M. Biosynthesis of the protein encoded by the c-met proto-oncogene. Oncogene. 1989 Nov;4(11):1383–1388. [PubMed] [Google Scholar]
  18. Grant D. S., Kleinman H. K., Goldberg I. D., Bhargava M. M., Nickoloff B. J., Kinsella J. L., Polverini P., Rosen E. M. Scatter factor induces blood vessel formation in vivo. Proc Natl Acad Sci U S A. 1993 Mar 1;90(5):1937–1941. doi: 10.1073/pnas.90.5.1937. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Higashio K., Shima N. Tumor cytotoxic activity of HGF-SF. EXS. 1993;65:351–368. [PubMed] [Google Scholar]
  20. Honegger A. M., Dull T. J., Felder S., Van Obberghen E., Bellot F., Szapary D., Schmidt A., Ullrich A., Schlessinger J. Point mutation at the ATP binding site of EGF receptor abolishes protein-tyrosine kinase activity and alters cellular routing. Cell. 1987 Oct 23;51(2):199–209. doi: 10.1016/0092-8674(87)90147-4. [DOI] [PubMed] [Google Scholar]
  21. Jeffers M., Rong S., Anver M., Vande Woude G. F. Autocrine hepatocyte growth factor/scatter factor-Met signaling induces transformation and the invasive/metastastic phenotype in C127 cells. Oncogene. 1996 Aug 15;13(4):853–856. [PubMed] [Google Scholar]
  22. Jeffers M., Rong S., Vande Woude G. F. Hepatocyte growth factor/scatter factor-Met signaling in tumorigenicity and invasion/metastasis. J Mol Med (Berl) 1996 Sep;74(9):505–513. doi: 10.1007/BF00204976. [DOI] [PubMed] [Google Scholar]
  23. Lin Y. Z., Clinton G. M. A soluble protein related to the HER-2 proto-oncogene product is released from human breast carcinoma cells. Oncogene. 1991 Apr;6(4):639–643. [PubMed] [Google Scholar]
  24. Lowy D. R., Rands E., Scolnick E. M. Helper-independent transformation by unintegrated Harvey sarcoma virus DNA. J Virol. 1978 May;26(2):291–298. doi: 10.1128/jvi.26.2.291-298.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Matsumoto K., Nakamura T. Hepatocyte growth factor: molecular structure, roles in liver regeneration, and other biological functions. Crit Rev Oncog. 1992;3(1-2):27–54. [PubMed] [Google Scholar]
  26. Matsumoto K., Nakamura T. Roles of HGF as a pleiotropic factor in organ regeneration. EXS. 1993;65:225–249. [PubMed] [Google Scholar]
  27. Miller K. G., Kiehart D. P. Fly division. J Cell Biol. 1995 Oct;131(1):1–5. doi: 10.1083/jcb.131.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Misumi Y., Misumi Y., Miki K., Takatsuki A., Tamura G., Ikehara Y. Novel blockade by brefeldin A of intracellular transport of secretory proteins in cultured rat hepatocytes. J Biol Chem. 1986 Aug 25;261(24):11398–11403. [PubMed] [Google Scholar]
  29. Miyazawa K., Toyama K., Gotoh A., Hendrie P. C., Mantel C., Broxmeyer H. E. Ligand-dependent polyubiquitination of c-kit gene product: a possible mechanism of receptor down modulation in M07e cells. Blood. 1994 Jan 1;83(1):137–145. [PubMed] [Google Scholar]
  30. Montesano R., Matsumoto K., Nakamura T., Orci L. Identification of a fibroblast-derived epithelial morphogen as hepatocyte growth factor. Cell. 1991 Nov 29;67(5):901–908. doi: 10.1016/0092-8674(91)90363-4. [DOI] [PubMed] [Google Scholar]
  31. Mori S., Claesson-Welsh L., Okuyama Y., Saito Y. Ligand-induced polyubiquitination of receptor tyrosine kinases. Biochem Biophys Res Commun. 1995 Aug 4;213(1):32–39. doi: 10.1006/bbrc.1995.2094. [DOI] [PubMed] [Google Scholar]
  32. Mori S., Heldin C. H., Claesson-Welsh L. Ligand-induced polyubiquitination of the platelet-derived growth factor beta-receptor. J Biol Chem. 1992 Mar 25;267(9):6429–6434. [PubMed] [Google Scholar]
  33. Mori S., Heldin C. H., Claesson-Welsh L. Ligand-induced ubiquitination of the platelet-derived growth factor beta-receptor plays a negative regulatory role in its mitogenic signaling. J Biol Chem. 1993 Jan 5;268(1):577–583. [PubMed] [Google Scholar]
  34. Mori S., Tanaka K., Omura S., Saito Y. Degradation process of ligand-stimulated platelet-derived growth factor beta-receptor involves ubiquitin-proteasome proteolytic pathway. J Biol Chem. 1995 Dec 8;270(49):29447–29452. doi: 10.1074/jbc.270.49.29447. [DOI] [PubMed] [Google Scholar]
  35. Naldini L., Weidner K. M., Vigna E., Gaudino G., Bardelli A., Ponzetto C., Narsimhan R. P., Hartmann G., Zarnegar R., Michalopoulos G. K. Scatter factor and hepatocyte growth factor are indistinguishable ligands for the MET receptor. EMBO J. 1991 Oct;10(10):2867–2878. doi: 10.1002/j.1460-2075.1991.tb07836.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Nusrat A., Parkos C. A., Bacarra A. E., Godowski P. J., Delp-Archer C., Rosen E. M., Madara J. L. Hepatocyte growth factor/scatter factor effects on epithelia. Regulation of intercellular junctions in transformed and nontransformed cell lines, basolateral polarization of c-met receptor in transformed and natural intestinal epithelia, and induction of rapid wound repair in a transformed model epithelium. J Clin Invest. 1994 May;93(5):2056–2065. doi: 10.1172/JCI117200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. O'Bryan J. P., Fridell Y. W., Koski R., Varnum B., Liu E. T. The transforming receptor tyrosine kinase, Axl, is post-translationally regulated by proteolytic cleavage. J Biol Chem. 1995 Jan 13;270(2):551–557. doi: 10.1074/jbc.270.2.551. [DOI] [PubMed] [Google Scholar]
  38. Omura S., Fujimoto T., Otoguro K., Matsuzaki K., Moriguchi R., Tanaka H., Sasaki Y. Lactacystin, a novel microbial metabolite, induces neuritogenesis of neuroblastoma cells. J Antibiot (Tokyo) 1991 Jan;44(1):113–116. doi: 10.7164/antibiotics.44.113. [DOI] [PubMed] [Google Scholar]
  39. Omura S., Matsuzaki K., Fujimoto T., Kosuge K., Furuya T., Fujita S., Nakagawa A. Structure of lactacystin, a new microbial metabolite which induces differentiation of neuroblastoma cells. J Antibiot (Tokyo) 1991 Jan;44(1):117–118. doi: 10.7164/antibiotics.44.117. [DOI] [PubMed] [Google Scholar]
  40. Prat M., Crepaldi T., Gandino L., Giordano S., Longati P., Comoglio P. C-terminal truncated forms of Met, the hepatocyte growth factor receptor. Mol Cell Biol. 1991 Dec;11(12):5954–5962. doi: 10.1128/mcb.11.12.5954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Pupa S. M., Ménard S., Morelli D., Pozzi B., De Palo G., Colnaghi M. I. The extracellular domain of the c-erbB-2 oncoprotein is released from tumor cells by proteolytic cleavage. Oncogene. 1993 Nov;8(11):2917–2923. [PubMed] [Google Scholar]
  42. Rodrigues G. A., Park M. Autophosphorylation modulates the kinase activity and oncogenic potential of the Met receptor tyrosine kinase. Oncogene. 1994 Jul;9(7):2019–2027. [PubMed] [Google Scholar]
  43. Rong S., Bodescot M., Blair D., Dunn J., Nakamura T., Mizuno K., Park M., Chan A., Aaronson S., Vande Woude G. F. Tumorigenicity of the met proto-oncogene and the gene for hepatocyte growth factor. Mol Cell Biol. 1992 Nov;12(11):5152–5158. doi: 10.1128/mcb.12.11.5152. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Rose-John S., Heinrich P. C. Soluble receptors for cytokines and growth factors: generation and biological function. Biochem J. 1994 Jun 1;300(Pt 2):281–290. doi: 10.1042/bj3000281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Rubin J. S., Bottaro D. P., Aaronson S. A. Hepatocyte growth factor/scatter factor and its receptor, the c-met proto-oncogene product. Biochim Biophys Acta. 1993 Dec 23;1155(3):357–371. doi: 10.1016/0304-419x(93)90015-5. [DOI] [PubMed] [Google Scholar]
  46. Rusciano D., Lorenzoni P., Burger M. M. Expression of constitutively activated hepatocyte growth factor/scatter factor receptor (c-met) in B16 melanoma cells selected for enhanced liver colonization. Oncogene. 1995 Nov 16;11(10):1979–1987. [PubMed] [Google Scholar]
  47. Santos O. F., Barros E. J., Yang X. M., Matsumoto K., Nakamura T., Park M., Nigam S. K. Involvement of hepatocyte growth factor in kidney development. Dev Biol. 1994 Jun;163(2):525–529. doi: 10.1006/dbio.1994.1169. [DOI] [PubMed] [Google Scholar]
  48. Schmidt C., Bladt F., Goedecke S., Brinkmann V., Zschiesche W., Sharpe M., Gherardi E., Birchmeier C. Scatter factor/hepatocyte growth factor is essential for liver development. Nature. 1995 Feb 23;373(6516):699–702. doi: 10.1038/373699a0. [DOI] [PubMed] [Google Scholar]
  49. Sonnenberg E., Meyer D., Weidner K. M., Birchmeier C. Scatter factor/hepatocyte growth factor and its receptor, the c-met tyrosine kinase, can mediate a signal exchange between mesenchyme and epithelia during mouse development. J Cell Biol. 1993 Oct;123(1):223–235. doi: 10.1083/jcb.123.1.223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Soriano J. V., Pepper M. S., Nakamura T., Orci L., Montesano R. Hepatocyte growth factor stimulates extensive development of branching duct-like structures by cloned mammary gland epithelial cells. J Cell Sci. 1995 Feb;108(Pt 2):413–430. doi: 10.1242/jcs.108.2.413. [DOI] [PubMed] [Google Scholar]
  51. Sorkin A., Westermark B., Heldin C. H., Claesson-Welsh L. Effect of receptor kinase inactivation on the rate of internalization and degradation of PDGF and the PDGF beta-receptor. J Cell Biol. 1991 Feb;112(3):469–478. doi: 10.1083/jcb.112.3.469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Southern P. J., Berg P. Transformation of mammalian cells to antibiotic resistance with a bacterial gene under control of the SV40 early region promoter. J Mol Appl Genet. 1982;1(4):327–341. [PubMed] [Google Scholar]
  53. Stoker M., Gherardi E., Perryman M., Gray J. Scatter factor is a fibroblast-derived modulator of epithelial cell mobility. Nature. 1987 May 21;327(6119):239–242. doi: 10.1038/327239a0. [DOI] [PubMed] [Google Scholar]
  54. Streit A., Stern C. D., Théry C., Ireland G. W., Aparicio S., Sharpe M. J., Gherardi E. A role for HGF/SF in neural induction and its expression in Hensen's node during gastrulation. Development. 1995 Mar;121(3):813–824. doi: 10.1242/dev.121.3.813. [DOI] [PubMed] [Google Scholar]
  55. Trowbridge I. S., Collawn J. F., Hopkins C. R. Signal-dependent membrane protein trafficking in the endocytic pathway. Annu Rev Cell Biol. 1993;9:129–161. doi: 10.1146/annurev.cb.09.110193.001021. [DOI] [PubMed] [Google Scholar]
  56. Tsarfaty I., Resau J. H., Rulong S., Keydar I., Faletto D. L., Vande Woude G. F. The met proto-oncogene receptor and lumen formation. Science. 1992 Aug 28;257(5074):1258–1261. doi: 10.1126/science.1387731. [DOI] [PubMed] [Google Scholar]
  57. Tsarfaty I., Rong S., Resau J. H., Rulong S., da Silva P. P., Vande Woude G. F. The Met proto-oncogene mesenchymal to epithelial cell conversion. Science. 1994 Jan 7;263(5143):98–101. doi: 10.1126/science.7505952. [DOI] [PubMed] [Google Scholar]
  58. Uehara Y., Minowa O., Mori C., Shiota K., Kuno J., Noda T., Kitamura N. Placental defect and embryonic lethality in mice lacking hepatocyte growth factor/scatter factor. Nature. 1995 Feb 23;373(6516):702–705. doi: 10.1038/373702a0. [DOI] [PubMed] [Google Scholar]
  59. Ullrich A., Schlessinger J. Signal transduction by receptors with tyrosine kinase activity. Cell. 1990 Apr 20;61(2):203–212. doi: 10.1016/0092-8674(90)90801-k. [DOI] [PubMed] [Google Scholar]
  60. Weidner K. M., Sachs M., Birchmeier W. The Met receptor tyrosine kinase transduces motility, proliferation, and morphogenic signals of scatter factor/hepatocyte growth factor in epithelial cells. J Cell Biol. 1993 Apr;121(1):145–154. doi: 10.1083/jcb.121.1.145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Weidner K. M., Sachs M., Riethmacher D., Birchmeier W. Mutation of juxtamembrane tyrosine residue 1001 suppresses loss-of-function mutations of the met receptor in epithelial cells. Proc Natl Acad Sci U S A. 1995 Mar 28;92(7):2597–2601. doi: 10.1073/pnas.92.7.2597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Wells A., Welsh J. B., Lazar C. S., Wiley H. S., Gill G. N., Rosenfeld M. G. Ligand-induced transformation by a noninternalizing epidermal growth factor receptor. Science. 1990 Feb 23;247(4945):962–964. doi: 10.1126/science.2305263. [DOI] [PubMed] [Google Scholar]
  63. Woolf A. S., Kolatsi-Joannou M., Hardman P., Andermarcher E., Moorby C., Fine L. G., Jat P. S., Noble M. D., Gherardi E. Roles of hepatocyte growth factor/scatter factor and the met receptor in the early development of the metanephros. J Cell Biol. 1995 Jan;128(1-2):171–184. doi: 10.1083/jcb.128.1.171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Yaglom J., Linskens M. H., Sadis S., Rubin D. M., Futcher B., Finley D. p34Cdc28-mediated control of Cln3 cyclin degradation. Mol Cell Biol. 1995 Feb;15(2):731–741. doi: 10.1128/mcb.15.2.731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Yee N. S., Hsiau C. W., Serve H., Vosseller K., Besmer P. Mechanism of down-regulation of c-kit receptor. Roles of receptor tyrosine kinase, phosphatidylinositol 3'-kinase, and protein kinase C. J Biol Chem. 1994 Dec 16;269(50):31991–31998. [PubMed] [Google Scholar]
  66. Yee N. S., Langen H., Besmer P. Mechanism of kit ligand, phorbol ester, and calcium-induced down-regulation of c-kit receptors in mast cells. J Biol Chem. 1993 Jul 5;268(19):14189–14201. [PubMed] [Google Scholar]
  67. Zhen Z., Giordano S., Longati P., Medico E., Campiglio M., Comoglio P. M. Structural and functional domains critical for constitutive activation of the HGF-receptor (Met). Oncogene. 1994 Jun;9(6):1691–1697. [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES