Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1997 Feb;17(2):809–818. doi: 10.1128/mcb.17.2.809

Severe growth defect in a Schizosaccharomyces pombe mutant defective in intron lariat degradation.

K Nam 1, G Lee 1, J Trambley 1, S E Devine 1, J D Boeke 1
PMCID: PMC231807  PMID: 9001235

Abstract

The cDNAs and genes encoding the intron lariat-debranching enzyme were isolated from the nematode Caenorhabditis elegans and the fission yeast Schizosaccharomyces pombe based on their homology with the Saccharomyces cerevisiae gene. The cDNAs were shown to be functional in an interspecific complementation experiment; they can complement an S. cerevisiae dbr1 null mutant. About 2.5% of budding yeast S. cerevisiae genes have introns, and the accumulation of excised introns in a dbr1 null mutant has little effect on cell growth. In contrast, many S. pombe genes contain introns, and often multiple introns per gene, so that S. pombe is estimated to contain approximately 40 times as many introns as S. cerevisiae. The S. pombe dbr1 gene was disrupted and shown to be nonessential. Like the S. cerevisiae mutant, the S. pombe null mutant accumulated introns to high levels, indicating that intron lariat debranching represents a rate-limiting step in intron degradation in both species. Unlike the S. cerevisiae mutant, the S. pombe dbr1::leu1+ mutant had a severe growth defect and exhibited an aberrant elongated cell shape in addition to an intron accumulation phenotype. The growth defect of the S. pombe dbr1::leu1+ strain suggests that debranching activity is critical for efficient intron RNA degradation and that blocking this pathway interferes with cell growth.

Full Text

The Full Text of this article is available as a PDF (863.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bachellerie J. P., Michot B., Nicoloso M., Balakin A., Ni J., Fournier M. J. Antisense snoRNAs: a family of nucleolar RNAs with long complementarities to rRNA. Trends Biochem Sci. 1995 Jul;20(7):261–264. doi: 10.1016/s0968-0004(00)89039-8. [DOI] [PubMed] [Google Scholar]
  2. Caffarelli E., Fatica A., Prislei S., De Gregorio E., Fragapane P., Bozzoni I. Processing of the intron-encoded U16 and U18 snoRNAs: the conserved C and D boxes control both the processing reaction and the stability of the mature snoRNA. EMBO J. 1996 Mar 1;15(5):1121–1131. [PMC free article] [PubMed] [Google Scholar]
  3. Cecconi F., Mariottini P., Amaldi F. The Xenopus intron-encoded U17 snoRNA is produced by exonucleolytic processing of its precursor in oocytes. Nucleic Acids Res. 1995 Nov 25;23(22):4670–4676. doi: 10.1093/nar/23.22.4670. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chapman K. B., Boeke J. D. Isolation and characterization of the gene encoding yeast debranching enzyme. Cell. 1991 May 3;65(3):483–492. doi: 10.1016/0092-8674(91)90466-c. [DOI] [PubMed] [Google Scholar]
  5. Damagnez V., de Recondo A. M., Baldacci G. Identification of a gene encoding the predicted ribosomal protein L7b divergently transcribed from POL1 in fission yeast Schizosaccharomyces pombe. Nucleic Acids Res. 1991 Mar 11;19(5):1099–1104. doi: 10.1093/nar/19.5.1099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Devine S. E., Boeke J. D. Efficient integration of artificial transposons into plasmid targets in vitro: a useful tool for DNA mapping, sequencing and genetic analysis. Nucleic Acids Res. 1994 Sep 11;22(18):3765–3772. doi: 10.1093/nar/22.18.3765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Domdey H., Apostol B., Lin R. J., Newman A., Brody E., Abelson J. Lariat structures are in vivo intermediates in yeast pre-mRNA splicing. Cell. 1984 Dec;39(3 Pt 2):611–621. doi: 10.1016/0092-8674(84)90468-9. [DOI] [PubMed] [Google Scholar]
  8. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  9. Fikes J. D., Becker D. M., Winston F., Guarente L. Striking conservation of TFIID in Schizosaccharomyces pombe and Saccharomyces cerevisiae. Nature. 1990 Jul 19;346(6281):291–294. doi: 10.1038/346291a0. [DOI] [PubMed] [Google Scholar]
  10. Fink G. R. Pseudogenes in yeast? Cell. 1987 Apr 10;49(1):5–6. doi: 10.1016/0092-8674(87)90746-x. [DOI] [PubMed] [Google Scholar]
  11. Gietz R. D., Schiestl R. H. Applications of high efficiency lithium acetate transformation of intact yeast cells using single-stranded nucleic acids as carrier. Yeast. 1991 Apr;7(3):253–263. doi: 10.1002/yea.320070307. [DOI] [PubMed] [Google Scholar]
  12. Hoheisel J. D., Maier E., Mott R., McCarthy L., Grigoriev A. V., Schalkwyk L. C., Nizetic D., Francis F., Lehrach H. High resolution cosmid and P1 maps spanning the 14 Mb genome of the fission yeast S. pombe. Cell. 1993 Apr 9;73(1):109–120. doi: 10.1016/0092-8674(93)90164-l. [DOI] [PubMed] [Google Scholar]
  13. Jacquier A., Rosbash M. RNA splicing and intron turnover are greatly diminished by a mutant yeast branch point. Proc Natl Acad Sci U S A. 1986 Aug;83(16):5835–5839. doi: 10.1073/pnas.83.16.5835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kalogeropoulos A. Automatic intron detection in nuclear DNA sequences of Saccharomyces cerevisiae. Yeast. 1995 May;11(6):555–565. doi: 10.1002/yea.320110605. [DOI] [PubMed] [Google Scholar]
  15. Keeney J. B., Boeke J. D. Efficient targeted integration at leu1-32 and ura4-294 in Schizosaccharomyces pombe. Genetics. 1994 Mar;136(3):849–856. doi: 10.1093/genetics/136.3.849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kikuchi Y., Kitazawa Y., Shimatake H., Yamamoto M. The primary structure of the leu1+ gene of Schizosaccharomyces pombe. Curr Genet. 1988 Oct;14(4):375–379. doi: 10.1007/BF00419995. [DOI] [PubMed] [Google Scholar]
  17. Kiss T., Filipowicz W. Exonucleolytic processing of small nucleolar RNAs from pre-mRNA introns. Genes Dev. 1995 Jun 1;9(11):1411–1424. doi: 10.1101/gad.9.11.1411. [DOI] [PubMed] [Google Scholar]
  18. Kroll E. S., Hyland K. M., Hieter P., Li J. J. Establishing genetic interactions by a synthetic dosage lethality phenotype. Genetics. 1996 May;143(1):95–102. doi: 10.1093/genetics/143.1.95. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Levin H. L., Weaver D. C., Boeke J. D. Two related families of retrotransposons from Schizosaccharomyces pombe. Mol Cell Biol. 1990 Dec;10(12):6791–6798. doi: 10.1128/mcb.10.12.6791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Murray J. M., Watts F. Z. Isolation of a Schizosaccharomyces pombe homologue to the rat ribosomal protein, L7. Nucleic Acids Res. 1990 Aug 11;18(15):4590–4590. doi: 10.1093/nar/18.15.4590. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Nam K., Hudson R. H., Chapman K. B., Ganeshan K., Damha M. J., Boeke J. D. Yeast lariat debranching enzyme. Substrate and sequence specificity. J Biol Chem. 1994 Aug 12;269(32):20613–20621. [PubMed] [Google Scholar]
  22. Padgett R. A., Grabowski P. J., Konarska M. M., Seiler S., Sharp P. A. Splicing of messenger RNA precursors. Annu Rev Biochem. 1986;55:1119–1150. doi: 10.1146/annurev.bi.55.070186.005351. [DOI] [PubMed] [Google Scholar]
  23. Prabhala G., Rosenberg G. H., Käufer N. F. Architectural features of pre-mRNA introns in the fission yeast Schizosaccharomyces pombe. Yeast. 1992 Mar;8(3):171–182. doi: 10.1002/yea.320080303. [DOI] [PubMed] [Google Scholar]
  24. Rodriguez-Medina J. R., Rymond B. C. Prevalence and distribution of introns in non-ribosomal protein genes of yeast. Mol Gen Genet. 1994 Jun 3;243(5):532–539. doi: 10.1007/BF00284201. [DOI] [PubMed] [Google Scholar]
  25. Ruskin B., Green M. R. An RNA processing activity that debranches RNA lariats. Science. 1985 Jul 12;229(4709):135–140. doi: 10.1126/science.2990042. [DOI] [PubMed] [Google Scholar]
  26. Ruskin B., Krainer A. R., Maniatis T., Green M. R. Excision of an intact intron as a novel lariat structure during pre-mRNA splicing in vitro. Cell. 1984 Aug;38(1):317–331. doi: 10.1016/0092-8674(84)90553-1. [DOI] [PubMed] [Google Scholar]
  27. Sharp P. A., Konarksa M. M., Grabowski P. J., Lamond A. I., Marciniak R., Seiler S. R. Splicing of messenger RNA precursors. Cold Spring Harb Symp Quant Biol. 1987;52:277–285. doi: 10.1101/sqb.1987.052.01.033. [DOI] [PubMed] [Google Scholar]
  28. Stepien P. P., Butow R. A. Yeast colony northern: a fast method for detection of transcripts by colony hybridization. Nucleic Acids Res. 1990 Jan 25;18(2):380–380. doi: 10.1093/nar/18.2.380. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Tani T., Ohshima Y. The gene for the U6 small nuclear RNA in fission yeast has an intron. Nature. 1989 Jan 5;337(6202):87–90. doi: 10.1038/337087a0. [DOI] [PubMed] [Google Scholar]
  30. Tycowski K. T., Shu M. D., Steitz J. A. A mammalian gene with introns instead of exons generating stable RNA products. Nature. 1996 Feb 1;379(6564):464–466. doi: 10.1038/379464a0. [DOI] [PubMed] [Google Scholar]
  31. Vijayraghavan U., Company M., Abelson J. Isolation and characterization of pre-mRNA splicing mutants of Saccharomyces cerevisiae. Genes Dev. 1989 Aug;3(8):1206–1216. doi: 10.1101/gad.3.8.1206. [DOI] [PubMed] [Google Scholar]
  32. Waterston R., Martin C., Craxton M., Huynh C., Coulson A., Hillier L., Durbin R., Green P., Shownkeen R., Halloran N. A survey of expressed genes in Caenorhabditis elegans. Nat Genet. 1992 May;1(2):114–123. doi: 10.1038/ng0592-114. [DOI] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES