Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1997 Feb;17(2):862–872. doi: 10.1128/mcb.17.2.862

Nf1-deficient mouse Schwann cells are angiogenic and invasive and can be induced to hyperproliferate: reversion of some phenotypes by an inhibitor of farnesyl protein transferase.

H A Kim 1, B Ling 1, N Ratner 1
PMCID: PMC231813  PMID: 9001241

Abstract

We have developed a potential model of Schwann cell tumor formation in neurofibromatosis type 1 (NF1). We show that mouse Schwann cells heterozygous or null at Nf1 display angiogenic and invasive properties, mimicking the behavior of Schwann cells from human neurofibromas. Mutations at Nf1 are insufficient to promote Schwann cell hyperplasia. Here we show that Schwann cell hyperplasia can be induced by protein kinase A activation in mutant cells. Removal of serum from the culture medium also stimulates hyperplasia, but only in some mutant cells. After serum removal, clones of hyperproliferating Schwann cells lose contact with axons in vitro, develop growth factor-independent proliferation, and exhibit decreased expression of the cell differentiation marker P0 protein; hyperproliferating cells develop after a 1-week lag in Schwann cells heterozygous at Nf1. The experiments suggest that events subsequent to Nf1 mutations are required for development of Schwann cell hyperplasia. Finally, an anti-Ras farnesyl protein transferase inhibitor greatly diminished both clone formation and hyperproliferation of null mutant cells, but not invasion; farnesyl transferase inhibitors could be useful in treating benign manifestations of NF1.

Full Text

The Full Text of this article is available as a PDF (997.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arvidsson U., Johnson H., Piehl F., Cullheim S., Hökfelt T., Risling M., Terenius L., Ulfhake B. Peripheral nerve section induces increased levels of calcitonin gene-related peptide (CGRP)-like immunoreactivity in axotomized motoneurons. Exp Brain Res. 1990;79(1):212–216. doi: 10.1007/BF00228891. [DOI] [PubMed] [Google Scholar]
  2. Auerbach W., Auerbach R. Angiogenesis inhibition: a review. Pharmacol Ther. 1994 Sep;63(3):265–311. doi: 10.1016/0163-7258(94)90027-2. [DOI] [PubMed] [Google Scholar]
  3. Ausprunk D. H., Knighton D. R., Folkman J. Vascularization of normal and neoplastic tissues grafted to the chick chorioallantois. Role of host and preexisting graft blood vessels. Am J Pathol. 1975 Jun;79(3):597–618. [PMC free article] [PubMed] [Google Scholar]
  4. Ballester R., Marchuk D., Boguski M., Saulino A., Letcher R., Wigler M., Collins F. The NF1 locus encodes a protein functionally related to mammalian GAP and yeast IRA proteins. Cell. 1990 Nov 16;63(4):851–859. doi: 10.1016/0092-8674(90)90151-4. [DOI] [PubMed] [Google Scholar]
  5. Ballin M., Gomez D. E., Sinha C. C., Thorgeirsson U. P. Ras oncogene mediated induction of a 92 kDa metalloproteinase; strong correlation with the malignant phenotype. Biochem Biophys Res Commun. 1988 Aug 15;154(3):832–838. doi: 10.1016/0006-291x(88)90215-x. [DOI] [PubMed] [Google Scholar]
  6. Ballin M., Mackay A. R., Hartzler J. L., Nason A., Pelina M. D., Thorgeirsson U. P. Ras levels and metalloproteinase activity in normal versus neoplastic rat mammary tissues. Clin Exp Metastasis. 1991 Mar-Apr;9(2):179–189. doi: 10.1007/BF01756388. [DOI] [PubMed] [Google Scholar]
  7. Basu T. N., Gutmann D. H., Fletcher J. A., Glover T. W., Collins F. S., Downward J. Aberrant regulation of ras proteins in malignant tumour cells from type 1 neurofibromatosis patients. Nature. 1992 Apr 23;356(6371):713–715. doi: 10.1038/356713a0. [DOI] [PubMed] [Google Scholar]
  8. Boghaert E. R., Simpson J. F., Zimmer S. G. Invasion in vitro of malignant hamster brain tumor cells is influenced by the number of cells and the mode of malignant progression. Invasion Metastasis. 1992;12(1):12–23. [PubMed] [Google Scholar]
  9. Brannan C. I., Perkins A. S., Vogel K. S., Ratner N., Nordlund M. L., Reid S. W., Buchberg A. M., Jenkins N. A., Parada L. F., Copeland N. G. Targeted disruption of the neurofibromatosis type-1 gene leads to developmental abnormalities in heart and various neural crest-derived tissues. Genes Dev. 1994 May 1;8(9):1019–1029. doi: 10.1101/gad.8.9.1019. [DOI] [PubMed] [Google Scholar]
  10. Cheng L., Khan M., Mudge A. W. Calcitonin gene-related peptide promotes Schwann cell proliferation. J Cell Biol. 1995 May;129(3):789–796. doi: 10.1083/jcb.129.3.789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Coffer A., Fellows J., Young S., Pappin D., Rahman D. Purification and characterization of biologically active scatter factor from ras-transformed NIH 3T3 conditioned medium. Biochem J. 1991 Aug 15;278(Pt 1):35–41. doi: 10.1042/bj2780035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Colman S. D., Williams C. A., Wallace M. R. Benign neurofibromas in type 1 neurofibromatosis (NF1) show somatic deletions of the NF1 gene. Nat Genet. 1995 Sep;11(1):90–92. doi: 10.1038/ng0995-90. [DOI] [PubMed] [Google Scholar]
  13. Cook S. J., McCormick F. Inhibition by cAMP of Ras-dependent activation of Raf. Science. 1993 Nov 12;262(5136):1069–1072. doi: 10.1126/science.7694367. [DOI] [PubMed] [Google Scholar]
  14. Cox A. D., Garcia A. M., Westwick J. K., Kowalczyk J. J., Lewis M. D., Brenner D. A., Der C. J. The CAAX peptidomimetic compound B581 specifically blocks farnesylated, but not geranylgeranylated or myristylated, oncogenic ras signaling and transformation. J Biol Chem. 1994 Jul 29;269(30):19203–19206. [PubMed] [Google Scholar]
  15. DeClue J. E., Papageorge A. G., Fletcher J. A., Diehl S. R., Ratner N., Vass W. C., Lowy D. R. Abnormal regulation of mammalian p21ras contributes to malignant tumor growth in von Recklinghausen (type 1) neurofibromatosis. Cell. 1992 Apr 17;69(2):265–273. doi: 10.1016/0092-8674(92)90407-4. [DOI] [PubMed] [Google Scholar]
  16. Denko N. C., Giaccia A. J., Stringer J. R., Stambrook P. J. The human Ha-ras oncogene induces genomic instability in murine fibroblasts within one cell cycle. Proc Natl Acad Sci U S A. 1994 May 24;91(11):5124–5128. doi: 10.1073/pnas.91.11.5124. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ducatman B. S., Scheithauer B. W., Piepgras D. G., Reiman H. M. Malignant peripheral nerve sheath tumors in childhood. J Neurooncol. 1984;2(3):241–248. doi: 10.1007/BF00253276. [DOI] [PubMed] [Google Scholar]
  18. Glover T. W., Stein C. K., Legius E., Andersen L. B., Brereton A., Johnson S. Molecular and cytogenetic analysis of tumors in von Recklinghausen neurofibromatosis. Genes Chromosomes Cancer. 1991 Jan;3(1):62–70. doi: 10.1002/gcc.2870030111. [DOI] [PubMed] [Google Scholar]
  19. Goldberg G. I., Frisch S. M., He C., Wilhelm S. M., Reich R., Collier I. E. Secreted proteases. Regulation of their activity and their possible role in metastasis. Ann N Y Acad Sci. 1990;580:375–384. doi: 10.1111/j.1749-6632.1990.tb17945.x. [DOI] [PubMed] [Google Scholar]
  20. Golubić M., Roudebush M., Dobrowolski S., Wolfman A., Stacey D. W. Catalytic properties, tissue and intracellular distribution of neurofibromin. Oncogene. 1992 Nov;7(11):2151–2159. [PubMed] [Google Scholar]
  21. Iberg N., Rogelj S., Fanning P., Klagsbrun M. Purification of 18- and 22-kDa forms of basic fibroblast growth factor from rat cells transformed by the ras oncogene. J Biol Chem. 1989 Nov 25;264(33):19951–19955. [PubMed] [Google Scholar]
  22. Ichikawa T., Kyprianou N., Isaacs J. T. Genetic instability and the acquisition of metastatic ability by rat mammary cancer cells following v-H-ras oncogene transfection. Cancer Res. 1990 Oct 1;50(19):6349–6357. [PubMed] [Google Scholar]
  23. Jacks T., Shih T. S., Schmitt E. M., Bronson R. T., Bernards A., Weinberg R. A. Tumour predisposition in mice heterozygous for a targeted mutation in Nf1. Nat Genet. 1994 Jul;7(3):353–361. doi: 10.1038/ng0794-353. [DOI] [PubMed] [Google Scholar]
  24. James G. L., Brown M. S., Cobb M. H., Goldstein J. L. Benzodiazepine peptidomimetic BZA-5B interrupts the MAP kinase activation pathway in H-Ras-transformed Rat-1 cells, but not in untransformed cells. J Biol Chem. 1994 Nov 4;269(44):27705–27714. [PubMed] [Google Scholar]
  25. James G. L., Goldstein J. L., Brown M. S., Rawson T. E., Somers T. C., McDowell R. S., Crowley C. W., Lucas B. K., Levinson A. D., Marsters J. C., Jr Benzodiazepine peptidomimetics: potent inhibitors of Ras farnesylation in animal cells. Science. 1993 Jun 25;260(5116):1937–1942. doi: 10.1126/science.8316834. [DOI] [PubMed] [Google Scholar]
  26. Kamata Y. Study on the ultrastructure and acetylcholinesterase activity in von Recklinghausen's neurofibromatosis. Acta Pathol Jpn. 1978 May;28(3):393–410. doi: 10.1111/j.1440-1827.1978.tb01264.x. [DOI] [PubMed] [Google Scholar]
  27. Kim H. A., Rosenbaum T., Marchionni M. A., Ratner N., DeClue J. E. Schwann cells from neurofibromin deficient mice exhibit activation of p21ras, inhibition of cell proliferation and morphological changes. Oncogene. 1995 Jul 20;11(2):325–335. [PubMed] [Google Scholar]
  28. Kim J. H., Johansen F. E., Robertson N., Catino J. J., Prywes R., Kumar C. C. Suppression of Ras transformation by serum response factor. J Biol Chem. 1994 May 13;269(19):13740–13743. [PubMed] [Google Scholar]
  29. Kohl N. E., Mosser S. D., deSolms S. J., Giuliani E. A., Pompliano D. L., Graham S. L., Smith R. L., Scolnick E. M., Oliff A., Gibbs J. B. Selective inhibition of ras-dependent transformation by a farnesyltransferase inhibitor. Science. 1993 Jun 25;260(5116):1934–1937. doi: 10.1126/science.8316833. [DOI] [PubMed] [Google Scholar]
  30. Kohl N. E., Omer C. A., Conner M. W., Anthony N. J., Davide J. P., deSolms S. J., Giuliani E. A., Gomez R. P., Graham S. L., Hamilton K. Inhibition of farnesyltransferase induces regression of mammary and salivary carcinomas in ras transgenic mice. Nat Med. 1995 Aug;1(8):792–797. doi: 10.1038/nm0895-792. [DOI] [PubMed] [Google Scholar]
  31. Krasnoselsky A., Massay M. J., DeFrances M. C., Michalopoulos G., Zarnegar R., Ratner N. Hepatocyte growth factor is a mitogen for Schwann cells and is present in neurofibromas. J Neurosci. 1994 Dec;14(12):7284–7290. doi: 10.1523/JNEUROSCI.14-12-07284.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Krone W., Mao R., Mühleck O. S., Kling H., Fink T. Cell culture studies on neurofibromatosis (von Recklinghausen). Characterization of cells growing from neurofibromas. Ann N Y Acad Sci. 1986;486:354–370. doi: 10.1111/j.1749-6632.1986.tb48089.x. [DOI] [PubMed] [Google Scholar]
  33. Largaespada D. A., Brannan C. I., Jenkins N. A., Copeland N. G. Nf1 deficiency causes Ras-mediated granulocyte/macrophage colony stimulating factor hypersensitivity and chronic myeloid leukaemia. Nat Genet. 1996 Feb;12(2):137–143. doi: 10.1038/ng0296-137. [DOI] [PubMed] [Google Scholar]
  34. Legius E., Dierick H., Wu R., Hall B. K., Marynen P., Cassiman J. J., Glover T. W. TP53 mutations are frequent in malignant NF1 tumors. Genes Chromosomes Cancer. 1994 Aug;10(4):250–255. doi: 10.1002/gcc.2870100405. [DOI] [PubMed] [Google Scholar]
  35. Legius E., Marchuk D. A., Collins F. S., Glover T. W. Somatic deletion of the neurofibromatosis type 1 gene in a neurofibrosarcoma supports a tumour suppressor gene hypothesis. Nat Genet. 1993 Feb;3(2):122–126. doi: 10.1038/ng0293-122. [DOI] [PubMed] [Google Scholar]
  36. Liotta L. A., Wewer U., Rao N. C., Schiffmann E., Stracke M., Guirguis R., Thorgeirsson U., Muschel R., Sobel M. Biochemical mechanisms of tumor invasion and metastases. Prog Clin Biol Res. 1988;256:3–16. [PubMed] [Google Scholar]
  37. LoSardo J. E., Goggin B. S., Bohoslawec O., Neri A. Degradation of endothelial cell matrix collagen is correlated with induction of stromelysin by an activated ras oncogene. Clin Exp Metastasis. 1995 Jul;13(4):236–248. doi: 10.1007/BF00133479. [DOI] [PubMed] [Google Scholar]
  38. Markwell M. A., Haas S. M., Bieber L. L., Tolbert N. E. A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal Biochem. 1978 Jun 15;87(1):206–210. doi: 10.1016/0003-2697(78)90586-9. [DOI] [PubMed] [Google Scholar]
  39. Martin G. A., Viskochil D., Bollag G., McCabe P. C., Crosier W. J., Haubruck H., Conroy L., Clark R., O'Connell P., Cawthon R. M. The GAP-related domain of the neurofibromatosis type 1 gene product interacts with ras p21. Cell. 1990 Nov 16;63(4):843–849. doi: 10.1016/0092-8674(90)90150-d. [DOI] [PubMed] [Google Scholar]
  40. Menon A. G., Anderson K. M., Riccardi V. M., Chung R. Y., Whaley J. M., Yandell D. W., Farmer G. E., Freiman R. N., Lee J. K., Li F. P. Chromosome 17p deletions and p53 gene mutations associated with the formation of malignant neurofibrosarcomas in von Recklinghausen neurofibromatosis. Proc Natl Acad Sci U S A. 1990 Jul;87(14):5435–5439. doi: 10.1073/pnas.87.14.5435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Morgan L., Jessen K. R., Mirsky R. The effects of cAMP on differentiation of cultured Schwann cells: progression from an early phenotype (04+) to a myelin phenotype (P0+, GFAP-, N-CAM-, NGF-receptor-) depends on growth inhibition. J Cell Biol. 1991 Feb;112(3):457–467. doi: 10.1083/jcb.112.3.457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Muir D. Differences in proliferation and invasion by normal, transformed and NF1 Schwann cell cultures are influenced by matrix metalloproteinase expression. Clin Exp Metastasis. 1995 Jul;13(4):303–314. doi: 10.1007/BF00133486. [DOI] [PubMed] [Google Scholar]
  43. Nagasu T., Yoshimatsu K., Rowell C., Lewis M. D., Garcia A. M. Inhibition of human tumor xenograft growth by treatment with the farnesyl transferase inhibitor B956. Cancer Res. 1995 Nov 15;55(22):5310–5314. [PubMed] [Google Scholar]
  44. Noguchi K., Senba E., Morita Y., Sato M., Tohyama M. Co-expression of alpha-CGRP and beta-CGRP mRNAs in the rat dorsal root ganglion cells. Neurosci Lett. 1990 Jan 1;108(1-2):1–5. doi: 10.1016/0304-3940(90)90696-7. [DOI] [PubMed] [Google Scholar]
  45. Nordlund M., Hong D., Fei X., Ratner N. Schwann cells and cells in the oligodendrocyte lineage proliferate in response to a 50,000 dalton membrane-associated mitogen present in developing brain. Glia. 1992;5(3):182–192. doi: 10.1002/glia.440050304. [DOI] [PubMed] [Google Scholar]
  46. Ottini L., Esposito D. L., Richetta A., Carlesimo M., Palmirotta R., Verí M. C., Battista P., Frati L., Caramia F. G., Calvieri S. Alterations of microsatellites in neurofibromas of von Recklinghausen's disease. Cancer Res. 1995 Dec 1;55(23):5677–5680. [PubMed] [Google Scholar]
  47. Peltonen J., Jaakkola S., Lebwohl M., Renvall S., Risteli L., Virtanen I., Uitto J. Cellular differentiation and expression of matrix genes in type 1 neurofibromatosis. Lab Invest. 1988 Dec;59(6):760–771. [PubMed] [Google Scholar]
  48. Poirier J., Escourolle R., Castaigne P. Les neurobibromes de la maladie de Recklinghausen. Etude ultrastructurale et place nosologique par rapport aux neurinomes. Acta Neuropathol. 1968 Jun 7;10(4):279–294. doi: 10.1007/BF00690704. [DOI] [PubMed] [Google Scholar]
  49. Powell P. P., Klagsbrun M. Regulation of basic fibroblast growth factor mRNA expression in rat C6 glioma cells. Exp Cell Res. 1993 Dec;209(2):224–230. doi: 10.1006/excr.1993.1305. [DOI] [PubMed] [Google Scholar]
  50. Prendergast G. C., Davide J. P., deSolms S. J., Giuliani E. A., Graham S. L., Gibbs J. B., Oliff A., Kohl N. E. Farnesyltransferase inhibition causes morphological reversion of ras-transformed cells by a complex mechanism that involves regulation of the actin cytoskeleton. Mol Cell Biol. 1994 Jun;14(6):4193–4202. doi: 10.1128/mcb.14.6.4193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Rak J., Mitsuhashi Y., Bayko L., Filmus J., Shirasawa S., Sasazuki T., Kerbel R. S. Mutant ras oncogenes upregulate VEGF/VPF expression: implications for induction and inhibition of tumor angiogenesis. Cancer Res. 1995 Oct 15;55(20):4575–4580. [PubMed] [Google Scholar]
  52. Ratner N., Elbein A., Bunge M. B., Porter S., Bunge R. P., Glaser L. Specific asparagine-linked oligosaccharides are not required for certain neuron-neuron and neuron-Schwann cell interactions. J Cell Biol. 1986 Jul;103(1):159–170. doi: 10.1083/jcb.103.1.159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Ratner N., Lieberman M. A., Riccardi V. M., Hong D. M. Mitogen accumulation in von Recklinghausen neurofibromatosis. Ann Neurol. 1990 Mar;27(3):298–303. doi: 10.1002/ana.410270312. [DOI] [PubMed] [Google Scholar]
  54. Riccardi V. M. Neurofibromatosis: past, present, and future. N Engl J Med. 1991 May 2;324(18):1283–1285. doi: 10.1056/NEJM199105023241812. [DOI] [PubMed] [Google Scholar]
  55. Ridley A. J., Paterson H. F., Noble M., Land H. Ras-mediated cell cycle arrest is altered by nuclear oncogenes to induce Schwann cell transformation. EMBO J. 1988 Jun;7(6):1635–1645. doi: 10.1002/j.1460-2075.1988.tb02990.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Rosenbaum T., Boissy Y. L., Kombrinck K., Brannan C. I., Jenkins N. A., Copeland N. G., Ratner N. Neurofibromin-deficient fibroblasts fail to form perineurium in vitro. Development. 1995 Nov;121(11):3583–3592. doi: 10.1242/dev.121.11.3583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Sawada S., Florell S., Purandare S. M., Ota M., Stephens K., Viskochil D. Identification of NF1 mutations in both alleles of a dermal neurofibroma. Nat Genet. 1996 Sep;14(1):110–112. doi: 10.1038/ng0996-110. [DOI] [PubMed] [Google Scholar]
  58. Schott R. J., Morrow L. A. Growth factors and angiogenesis. Cardiovasc Res. 1993 Jul;27(7):1155–1161. doi: 10.1093/cvr/27.7.1155. [DOI] [PubMed] [Google Scholar]
  59. Seamon K. B., Daly J. W. Forskolin: a unique diterpene activator of cyclic AMP-generating systems. J Cyclic Nucleotide Res. 1981;7(4):201–224. [PubMed] [Google Scholar]
  60. Sheela S., Riccardi V. M., Ratner N. Angiogenic and invasive properties of neurofibroma Schwann cells. J Cell Biol. 1990 Aug;111(2):645–653. doi: 10.1083/jcb.111.2.645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Skuse G. R., Kosciolek B. A., Rowley P. T. Molecular genetic analysis of tumors in von Recklinghausen neurofibromatosis: loss of heterozygosity for chromosome 17. Genes Chromosomes Cancer. 1989 Sep;1(1):36–41. doi: 10.1002/gcc.2870010107. [DOI] [PubMed] [Google Scholar]
  62. Spinucci C., Zucker S., Wieman J. M., Lysik R. M., Imhof B., Ramamurthy N., Liotta L. A., Nagase H. Purification of a gelatin-degrading type IV collagenase secreted by ras oncogene-transformed fibroblasts. J Natl Cancer Inst. 1988 Nov 2;80(17):1416–1420. doi: 10.1093/jnci/80.17.1416. [DOI] [PubMed] [Google Scholar]
  63. Stenman G., Delorme E. O., Lau C. C., Sager R. Transfection with plasmid pSV2gptEJ induces chromosome rearrangements in CHEF cells. Proc Natl Acad Sci U S A. 1987 Jan;84(1):184–188. doi: 10.1073/pnas.84.1.184. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Stewart H. J., Eccleston P. A., Jessen K. R., Mirsky R. Interaction between cAMP elevation, identified growth factors, and serum components in regulating Schwann cell growth. J Neurosci Res. 1991 Oct;30(2):346–352. doi: 10.1002/jnr.490300210. [DOI] [PubMed] [Google Scholar]
  65. Vaalasti A., Suomalainen H., Kuokkanen K., Rechardt L. Neuropeptides in cutaneous neurofibromas of von Recklinghausen's disease. J Cutan Pathol. 1990 Dec;17(6):371–373. doi: 10.1111/j.1600-0560.1990.tb00114.x. [DOI] [PubMed] [Google Scholar]
  66. Vogel K. S., Brannan C. I., Jenkins N. A., Copeland N. G., Parada L. F. Loss of neurofibromin results in neurotrophin-independent survival of embryonic sensory and sympathetic neurons. Cell. 1995 Sep 8;82(5):733–742. doi: 10.1016/0092-8674(95)90470-0. [DOI] [PubMed] [Google Scholar]
  67. Wu J., Dent P., Jelinek T., Wolfman A., Weber M. J., Sturgill T. W. Inhibition of the EGF-activated MAP kinase signaling pathway by adenosine 3',5'-monophosphate. Science. 1993 Nov 12;262(5136):1065–1069. doi: 10.1126/science.7694366. [DOI] [PubMed] [Google Scholar]
  68. Xu G. F., Lin B., Tanaka K., Dunn D., Wood D., Gesteland R., White R., Weiss R., Tamanoi F. The catalytic domain of the neurofibromatosis type 1 gene product stimulates ras GTPase and complements ira mutants of S. cerevisiae. Cell. 1990 Nov 16;63(4):835–841. doi: 10.1016/0092-8674(90)90149-9. [DOI] [PubMed] [Google Scholar]
  69. Xu G. F., O'Connell P., Viskochil D., Cawthon R., Robertson M., Culver M., Dunn D., Stevens J., Gesteland R., White R. The neurofibromatosis type 1 gene encodes a protein related to GAP. Cell. 1990 Aug 10;62(3):599–608. doi: 10.1016/0092-8674(90)90024-9. [DOI] [PubMed] [Google Scholar]
  70. Yan N., Ricca C., Fletcher J., Glover T., Seizinger B. R., Manne V. Farnesyltransferase inhibitors block the neurofibromatosis type I (NF1) malignant phenotype. Cancer Res. 1995 Aug 15;55(16):3569–3575. [PubMed] [Google Scholar]
  71. van den Berg S., Kaina B., Rahmsdorf H. J., Ponta H., Herrlich P. Involvement of fos in spontaneous and ultraviolet light-induced genetic changes. Mol Carcinog. 1991;4(6):460–466. doi: 10.1002/mc.2940040609. [DOI] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES