Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1997 Mar;17(3):1366–1374. doi: 10.1128/mcb.17.3.1366

Frequent aberrant methylation of p16INK4a in primary rat lung tumors.

D S Swafford 1, S K Middleton 1, W A Palmisano 1, K J Nikula 1, J Tesfaigzi 1, S B Baylin 1, J G Herman 1, S A Belinsky 1
PMCID: PMC231861  PMID: 9032263

Abstract

The p16INK4a (p16) tumor suppressor gene is frequently inactivated by homozygous deletion or methylation of the 5' CpG island in cell lines derived from human non-small-cell lung cancers. However, the frequency of dysfunction in primary tumors appears to be significantly lower than that in cell lines. This discordance could result from the occurrence or selection of p16 dysfunction during cell culture. Alternatively, techniques commonly used to examine tumors for genetic and epigenetic alterations may not be sensitive enough to detect all dysfunctions within the heterogeneous cell population present in primary tumors. If p16 inactivation plays a central role in development of non-small-cell lung cancer, then the frequency of gene inactivation in primary tumors should parallel that observed in cell lines. The present investigation addressed this issue in primary rat lung tumors and corresponding derived cell lines. A further goal was to determine whether the aberrant p16 gene methylation seen in human tumors is a conserved event in this animal model. The rat p16 gene was cloned and sequenced, and the predicted amino acid sequence of its product found to be 62% homologous to the amino acid sequence of the human analog. Homozygous deletion accounted for loss of p16 expression in 8 of 20 cell lines, while methylation of the CpG island extending throughout exon 1 was observed in 9 of 20 cell lines. 2-Deoxy-5-azacytidine treatment of cell lines with aberrant methylation restored gene expression. The methylated phenotype seen in cell lines showed an absolute correlation with detection of methylation in primary tumors. Aberrant methylation was also detected in four of eight primary tumors in which the derived cell line contained a deletion in p16. These results substantiate the primary tumor as the origin for dysfunction of the p16 gene and implicate CpG island methylation as the major mechanism for inactivating this gene in the rat lung tumors examined. Furthermore, rat lung cancer appears to be an excellent model in which to investigate the mechanisms of de novo gene methylation and the role of p16 dysfunction in the progression of neoplasia.

Full Text

The Full Text of this article is available as a PDF (743.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Belinsky S. A., Devereux T. R., Foley J. F., Maronpot R. R., Anderson M. W. Role of the alveolar type II cell in the development and progression of pulmonary tumors induced by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone in the A/J mouse. Cancer Res. 1992 Jun 1;52(11):3164–3173. [PubMed] [Google Scholar]
  2. Belinsky S. A., Lechner J. F., Johnson N. F. An improved method for the isolation of type II and Clara cells from mice. In Vitro Cell Dev Biol Anim. 1995 May;31(5):361–366. doi: 10.1007/BF02634285. [DOI] [PubMed] [Google Scholar]
  3. Belinsky S. A., Middleton S. K., Picksley S. M., Hahn F. F., Nikula K. J. Analysis of the K-ras and p53 pathways in X-ray-induced lung tumors in the rat. Radiat Res. 1996 Apr;145(4):449–456. [PubMed] [Google Scholar]
  4. Belinsky S. A., Nikula K. J., Baylin S. B., Issa J. P. Increased cytosine DNA-methyltransferase activity is target-cell-specific and an early event in lung cancer. Proc Natl Acad Sci U S A. 1996 Apr 30;93(9):4045–4050. doi: 10.1073/pnas.93.9.4045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bestor T., Laudano A., Mattaliano R., Ingram V. Cloning and sequencing of a cDNA encoding DNA methyltransferase of mouse cells. The carboxyl-terminal domain of the mammalian enzymes is related to bacterial restriction methyltransferases. J Mol Biol. 1988 Oct 20;203(4):971–983. doi: 10.1016/0022-2836(88)90122-2. [DOI] [PubMed] [Google Scholar]
  6. Cairns P., Polascik T. J., Eby Y., Tokino K., Califano J., Merlo A., Mao L., Herath J., Jenkins R., Westra W. Frequency of homozygous deletion at p16/CDKN2 in primary human tumours. Nat Genet. 1995 Oct;11(2):210–212. doi: 10.1038/ng1095-210. [DOI] [PubMed] [Google Scholar]
  7. Davis L. M., Caspary W. J., Sakallah S. A., Maronpot R., Wiseman R., Barrett J. C., Elliott R., Hozier J. C. Loss of heterozygosity in spontaneous and chemically induced tumors of the B6C3F1 mouse. Carcinogenesis. 1994 Aug;15(8):1637–1645. doi: 10.1093/carcin/15.8.1637. [DOI] [PubMed] [Google Scholar]
  8. Funaki K., Everitt J., Oshimura M., Freed J. J., Knudson A. G., Jr, Walker C. Hereditary renal cell carcinoma in the rat associated with nonrandom loss of chromosomes 5 and 6. Cancer Res. 1991 Aug 15;51(16):4415–4422. [PubMed] [Google Scholar]
  9. Gardiner-Garden M., Frommer M. CpG islands in vertebrate genomes. J Mol Biol. 1987 Jul 20;196(2):261–282. doi: 10.1016/0022-2836(87)90689-9. [DOI] [PubMed] [Google Scholar]
  10. Gonzalez-Zulueta M., Bender C. M., Yang A. S., Nguyen T., Beart R. W., Van Tornout J. M., Jones P. A. Methylation of the 5' CpG island of the p16/CDKN2 tumor suppressor gene in normal and transformed human tissues correlates with gene silencing. Cancer Res. 1995 Oct 15;55(20):4531–4535. [PubMed] [Google Scholar]
  11. Harbour J. W., Lai S. L., Whang-Peng J., Gazdar A. F., Minna J. D., Kaye F. J. Abnormalities in structure and expression of the human retinoblastoma gene in SCLC. Science. 1988 Jul 15;241(4863):353–357. doi: 10.1126/science.2838909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Herman J. G., Graff J. R., Myöhänen S., Nelkin B. D., Baylin S. B. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci U S A. 1996 Sep 3;93(18):9821–9826. doi: 10.1073/pnas.93.18.9821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Herman J. G., Latif F., Weng Y., Lerman M. I., Zbar B., Liu S., Samid D., Duan D. S., Gnarra J. R., Linehan W. M. Silencing of the VHL tumor-suppressor gene by DNA methylation in renal carcinoma. Proc Natl Acad Sci U S A. 1994 Oct 11;91(21):9700–9704. doi: 10.1073/pnas.91.21.9700. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Herzog C. R., Wiseman R. W., You M. Deletion mapping of a putative tumor suppressor gene on chromosome 4 in mouse lung tumors. Cancer Res. 1994 Aug 1;54(15):4007–4010. [PubMed] [Google Scholar]
  15. Issa J. P., Baylin S. B., Belinsky S. A. Methylation of the estrogen receptor CpG island in lung tumors is related to the specific type of carcinogen exposure. Cancer Res. 1996 Aug 15;56(16):3655–3658. [PubMed] [Google Scholar]
  16. Jones P. A. DNA methylation errors and cancer. Cancer Res. 1996 Jun 1;56(11):2463–2467. [PubMed] [Google Scholar]
  17. Kamb A., Gruis N. A., Weaver-Feldhaus J., Liu Q., Harshman K., Tavtigian S. V., Stockert E., Day R. S., 3rd, Johnson B. E., Skolnick M. H. A cell cycle regulator potentially involved in genesis of many tumor types. Science. 1994 Apr 15;264(5157):436–440. doi: 10.1126/science.8153634. [DOI] [PubMed] [Google Scholar]
  18. Knapek D. F., Serrano M., Beach D., Trono D., Walker C. L. Association of rat p15INK4B/p16INK4 deletions with monosomy 5 in kidney epithelial cell lines but not primary renal tumors. Cancer Res. 1995 Apr 15;55(8):1607–1612. [PubMed] [Google Scholar]
  19. Kratzke R. A., Greatens T. M., Rubins J. B., Maddaus M. A., Niewoehner D. E., Niehans G. A., Geradts J. Rb and p16INK4a expression in resected non-small cell lung tumors. Cancer Res. 1996 Aug 1;56(15):3415–3420. [PubMed] [Google Scholar]
  20. Laird P. W., Jaenisch R. DNA methylation and cancer. Hum Mol Genet. 1994;3(Spec No):1487–1495. doi: 10.1093/hmg/3.suppl_1.1487. [DOI] [PubMed] [Google Scholar]
  21. Leheup B. P., Federspiel S. J., Guerry-Force M. L., Wetherall N. T., Commers P. A., DiMari S. J., Haralson M. A. Extracellular matrix biosynthesis by cultured fetal rat lung epithelial cells. I. Characterization of the clone and the major genetic types of collagen produced. Lab Invest. 1989 Jun;60(6):791–807. [PubMed] [Google Scholar]
  22. Li A. P., Hahn F. F., Zamora P. O., Shimizu R. W., Henderson R. F., Brooks A. L., Richards R. Characterization of a lung epithelial cell strain with potential applications in toxicological studies. Toxicology. 1983 Jul-Aug;27(3-4):257–272. doi: 10.1016/0300-483x(83)90022-7. [DOI] [PubMed] [Google Scholar]
  23. Lukas J., Parry D., Aagaard L., Mann D. J., Bartkova J., Strauss M., Peters G., Bartek J. Retinoblastoma-protein-dependent cell-cycle inhibition by the tumour suppressor p16. Nature. 1995 Jun 8;375(6531):503–506. doi: 10.1038/375503a0. [DOI] [PubMed] [Google Scholar]
  24. Macleod D., Charlton J., Mullins J., Bird A. P. Sp1 sites in the mouse aprt gene promoter are required to prevent methylation of the CpG island. Genes Dev. 1994 Oct 1;8(19):2282–2292. doi: 10.1101/gad.8.19.2282. [DOI] [PubMed] [Google Scholar]
  25. Maesawa C., Tamura G., Nishizuka S., Ogasawara S., Ishida K., Terashima M., Sakata K., Sato N., Saito K., Satodate R. Inactivation of the CDKN2 gene by homozygous deletion and de novo methylation is associated with advanced stage esophageal squamous cell carcinoma. Cancer Res. 1996 Sep 1;56(17):3875–3878. [PubMed] [Google Scholar]
  26. Makos M., Nelkin B. D., Chazin V. R., Cavenee W. K., Brodeur G. M., Baylin S. B. DNA hypermethylation is associated with 17p allelic loss in neural tumors. Cancer Res. 1993 Jun 15;53(12):2715–2718. [PubMed] [Google Scholar]
  27. Makos M., Nelkin B. D., Lerman M. I., Latif F., Zbar B., Baylin S. B. Distinct hypermethylation patterns occur at altered chromosome loci in human lung and colon cancer. Proc Natl Acad Sci U S A. 1992 Mar 1;89(5):1929–1933. doi: 10.1073/pnas.89.5.1929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Makos M., Nelkin B. D., Reiter R. E., Gnarra J. R., Brooks J., Isaacs W., Linehan M., Baylin S. B. Regional DNA hypermethylation at D17S5 precedes 17p structural changes in the progression of renal tumors. Cancer Res. 1993 Jun 15;53(12):2719–2722. [PubMed] [Google Scholar]
  29. Mao L., Merlo A., Bedi G., Shapiro G. I., Edwards C. D., Rollins B. J., Sidransky D. A novel p16INK4A transcript. Cancer Res. 1995 Jul 15;55(14):2995–2997. [PubMed] [Google Scholar]
  30. Merlo A., Herman J. G., Mao L., Lee D. J., Gabrielson E., Burger P. C., Baylin S. B., Sidransky D. 5' CpG island methylation is associated with transcriptional silencing of the tumour suppressor p16/CDKN2/MTS1 in human cancers. Nat Med. 1995 Jul;1(7):686–692. doi: 10.1038/nm0795-686. [DOI] [PubMed] [Google Scholar]
  31. Nickell-Brady C., Hahn F. F., Finch G. L., Belinsky S. A. Analysis of K-ras, p53 and c-raf-1 mutations in beryllium-induced rat lung tumors. Carcinogenesis. 1994 Feb;15(2):257–262. doi: 10.1093/carcin/15.2.257. [DOI] [PubMed] [Google Scholar]
  32. Okamoto A., Hussain S. P., Hagiwara K., Spillare E. A., Rusin M. R., Demetrick D. J., Serrano M., Hannon G. J., Shiseki M., Zariwala M. Mutations in the p16INK4/MTS1/CDKN2, p15INK4B/MTS2, and p18 genes in primary and metastatic lung cancer. Cancer Res. 1995 Apr 1;55(7):1448–1451. [PubMed] [Google Scholar]
  33. Otterson G. A., Khleif S. N., Chen W., Coxon A. B., Kaye F. J. CDKN2 gene silencing in lung cancer by DNA hypermethylation and kinetics of p16INK4 protein induction by 5-aza 2'deoxycytidine. Oncogene. 1995 Sep 21;11(6):1211–1216. [PubMed] [Google Scholar]
  34. Otterson G. A., Kratzke R. A., Coxon A., Kim Y. W., Kaye F. J. Absence of p16INK4 protein is restricted to the subset of lung cancer lines that retains wildtype RB. Oncogene. 1994 Nov;9(11):3375–3378. [PubMed] [Google Scholar]
  35. Quelle D. E., Ashmun R. A., Hannon G. J., Rehberger P. A., Trono D., Richter K. H., Walker C., Beach D., Sherr C. J., Serrano M. Cloning and characterization of murine p16INK4a and p15INK4b genes. Oncogene. 1995 Aug 17;11(4):635–645. [PubMed] [Google Scholar]
  36. Quelle D. E., Zindy F., Ashmun R. A., Sherr C. J. Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest. Cell. 1995 Dec 15;83(6):993–1000. doi: 10.1016/0092-8674(95)90214-7. [DOI] [PubMed] [Google Scholar]
  37. Shapiro G. I., Edwards C. D., Kobzik L., Godleski J., Richards W., Sugarbaker D. J., Rollins B. J. Reciprocal Rb inactivation and p16INK4 expression in primary lung cancers and cell lines. Cancer Res. 1995 Feb 1;55(3):505–509. [PubMed] [Google Scholar]
  38. Swafford D. S., Nikula K. J., Mitchell C. E., Belinsky S. A. Low frequency of alterations in p53, K-ras, and mdm2 in rat lung neoplasms induced by diesel exhaust or carbon black. Carcinogenesis. 1995 May;16(5):1215–1221. doi: 10.1093/carcin/16.5.1215. [DOI] [PubMed] [Google Scholar]
  39. Vertino P. M., Yen R. W., Gao J., Baylin S. B. De novo methylation of CpG island sequences in human fibroblasts overexpressing DNA (cytosine-5-)-methyltransferase. Mol Cell Biol. 1996 Aug;16(8):4555–4565. doi: 10.1128/mcb.16.8.4555. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Wales M. M., Biel M. A., el Deiry W., Nelkin B. D., Issa J. P., Cavenee W. K., Kuerbitz S. J., Baylin S. B. p53 activates expression of HIC-1, a new candidate tumour suppressor gene on 17p13.3. Nat Med. 1995 Jun;1(6):570–577. doi: 10.1038/nm0695-570. [DOI] [PubMed] [Google Scholar]
  41. Weinberg R. A. The retinoblastoma protein and cell cycle control. Cell. 1995 May 5;81(3):323–330. doi: 10.1016/0092-8674(95)90385-2. [DOI] [PubMed] [Google Scholar]
  42. Xiao S., Li D., Corson J. M., Vijg J., Fletcher J. A. Codeletion of p15 and p16 genes in primary non-small cell lung carcinoma. Cancer Res. 1995 Jul 15;55(14):2968–2971. [PubMed] [Google Scholar]
  43. Yoshiura K., Kanai Y., Ochiai A., Shimoyama Y., Sugimura T., Hirohashi S. Silencing of the E-cadherin invasion-suppressor gene by CpG methylation in human carcinomas. Proc Natl Acad Sci U S A. 1995 Aug 1;92(16):7416–7419. doi: 10.1073/pnas.92.16.7416. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES