Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1997 Mar;17(3):1484–1489. doi: 10.1128/mcb.17.3.1484

Incubation at the nonpermissive temperature induces deficiencies in UV resistance and mutagenesis in mouse mutant cells expressing a temperature-sensitive ubiquitin-activating enzyme (E1).

H Ikehata 1, S Kaneda 1, F Yamao 1, T Seno 1, T Ono 1, F Hanaoka 1
PMCID: PMC231874  PMID: 9032276

Abstract

In temperature-sensitive (ts) mutants of mouse FM3A cells, the levels of mutagenesis and survival of cells treated with DNA-damaging agents have been difficult to assess because they are killed after their mutant phenotypes are expressed at the nonpermissive temperature. To avoid this difficulty, we incubated the ts mutant cells at the restrictive temperature, 39 degrees C, for only a limited period after inducing DNA damage. We used ts mutants defective in genes for ubiquitin-activating enzyme (E1), DNA polymerase alpha, and p34(cdc2) kinase. Whereas the latter two showed no effect, E1 mutants were sensitized remarkably to UV light if incubated at 39 degrees C for limited periods after UV exposure. Eighty-five percent of the sensitization occurred within the first 12 h of incubation at 39 degrees C, and more than 36 h at 39 degrees C did not produce any further sensitization. Moreover, while the 39 degrees C incubation gave E1 mutants a moderate spontaneous mutator phenotype, the same treatment significantly diminished the level of UV-induced 6-thioguanine resistance mutagenesis and extended the time necessary for expression of the mutation phenotype. These characteristics of E1 mutants are reminiscent of the defective DNA repair phenotypes of Saccharomyces cerevisiae rad6 mutants, which have defects in a ubiquitin-conjugating enzyme (E2), to which E1 is known to transfer ubiquitin. These results demonstrate the involvement of E1 in eukaryotic DNA repair and mutagenesis and provide the first direct evidence that the ubiquitin-conjugation system contributes to DNA repair in mammalian cells.

Full Text

The Full Text of this article is available as a PDF (107.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bailly V., Lamb J., Sung P., Prakash S., Prakash L. Specific complex formation between yeast RAD6 and RAD18 proteins: a potential mechanism for targeting RAD6 ubiquitin-conjugating activity to DNA damage sites. Genes Dev. 1994 Apr 1;8(7):811–820. doi: 10.1101/gad.8.7.811. [DOI] [PubMed] [Google Scholar]
  2. Bohr V. A., Smith C. A., Okumoto D. S., Hanawalt P. C. DNA repair in an active gene: removal of pyrimidine dimers from the DHFR gene of CHO cells is much more efficient than in the genome overall. Cell. 1985 Feb;40(2):359–369. doi: 10.1016/0092-8674(85)90150-3. [DOI] [PubMed] [Google Scholar]
  3. Budd M. E., Campbell J. L. DNA polymerases required for repair of UV-induced damage in Saccharomyces cerevisiae. Mol Cell Biol. 1995 Apr;15(4):2173–2179. doi: 10.1128/mcb.15.4.2173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chowdary D. R., Dermody J. J., Jha K. K., Ozer H. L. Accumulation of p53 in a mutant cell line defective in the ubiquitin pathway. Mol Cell Biol. 1994 Mar;14(3):1997–2003. doi: 10.1128/mcb.14.3.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ciechanover A., Finley D., Varshavsky A. Ubiquitin dependence of selective protein degradation demonstrated in the mammalian cell cycle mutant ts85. Cell. 1984 May;37(1):57–66. doi: 10.1016/0092-8674(84)90300-3. [DOI] [PubMed] [Google Scholar]
  6. Cox B. S., Parry J. M. The isolation, genetics and survival characteristics of ultraviolet light-sensitive mutants in yeast. Mutat Res. 1968 Jul-Aug;6(1):37–55. doi: 10.1016/0027-5107(68)90101-2. [DOI] [PubMed] [Google Scholar]
  7. Cox L. S., Lane D. P. Tumour suppressors, kinases and clamps: how p53 regulates the cell cycle in response to DNA damage. Bioessays. 1995 Jun;17(6):501–508. doi: 10.1002/bies.950170606. [DOI] [PubMed] [Google Scholar]
  8. Eki T., Enomoto T., Miyajima A., Miyazawa H., Murakami Y., Hanaoka F., Yamada M., Ui M. Isolation of temperature-sensitive cell cycle mutants from mouse FM3A cells. Characterization of mutants with special reference to DNA replication. J Biol Chem. 1990 Jan 5;265(1):26–33. [PubMed] [Google Scholar]
  9. Finley D., Ciechanover A., Varshavsky A. Thermolability of ubiquitin-activating enzyme from the mammalian cell cycle mutant ts85. Cell. 1984 May;37(1):43–55. doi: 10.1016/0092-8674(84)90299-x. [DOI] [PubMed] [Google Scholar]
  10. Hershko A., Ciechanover A. The ubiquitin system for protein degradation. Annu Rev Biochem. 1992;61:761–807. doi: 10.1146/annurev.bi.61.070192.003553. [DOI] [PubMed] [Google Scholar]
  11. Ikehata H. Comparison of DNA polymerases alpha, delta, and epsilon of mouse cell line FM3A and its temperature-sensitive mutant tsFT20. Tohoku J Exp Med. 1994 Jan;172(1):65–81. doi: 10.1620/tjem.172.65. [DOI] [PubMed] [Google Scholar]
  12. Imai N., Kaneda S., Nagai Y., Seno T., Ayusawa D., Hanaoka F., Yamao F. Cloning and sequence of a functionally active cDNA encoding the mouse ubiquitin-activating enzyme E1. Gene. 1992 Sep 10;118(2):279–282. doi: 10.1016/0378-1119(92)90200-9. [DOI] [PubMed] [Google Scholar]
  13. Izumi M., Miyazawa H., Harakawa S., Yatagai F., Hanaoka F. Identification of a point mutation in the cDNA of the catalytic subunit of DNA polymerase alpha from a temperature-sensitive mouse FM3A cell line. J Biol Chem. 1994 Mar 11;269(10):7639–7644. [PubMed] [Google Scholar]
  14. Jentsch S., McGrath J. P., Varshavsky A. The yeast DNA repair gene RAD6 encodes a ubiquitin-conjugating enzyme. Nature. 1987 Sep 10;329(6135):131–134. doi: 10.1038/329131a0. [DOI] [PubMed] [Google Scholar]
  15. Koken M. H., Reynolds P., Jaspers-Dekker I., Prakash L., Prakash S., Bootsma D., Hoeijmakers J. H. Structural and functional conservation of two human homologs of the yeast DNA repair gene RAD6. Proc Natl Acad Sci U S A. 1991 Oct 15;88(20):8865–8869. doi: 10.1073/pnas.88.20.8865. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Koken M., Reynolds P., Bootsma D., Hoeijmakers J., Prakash S., Prakash L. Dhr6, a Drosophila homolog of the yeast DNA-repair gene RAD6. Proc Natl Acad Sci U S A. 1991 May 1;88(9):3832–3836. doi: 10.1073/pnas.88.9.3832. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lawrence C. W., Stewart J. W., Sherman F., Christensen R. Specificity and frequency of ultraviolet-induced reversion of an iso-1-cytochrome c ochre mutant in radiation-sensitive strains of yeast. J Mol Biol. 1974 May 5;85(1):137–162. doi: 10.1016/0022-2836(74)90134-x. [DOI] [PubMed] [Google Scholar]
  18. Lawrence C. The RAD6 DNA repair pathway in Saccharomyces cerevisiae: what does it do, and how does it do it? Bioessays. 1994 Apr;16(4):253–258. doi: 10.1002/bies.950160408. [DOI] [PubMed] [Google Scholar]
  19. Longhese M. P., Plevani P., Lucchini G. Replication factor A is required in vivo for DNA replication, repair, and recombination. Mol Cell Biol. 1994 Dec;14(12):7884–7890. doi: 10.1128/mcb.14.12.7884. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Masutani C., Sugasawa K., Yanagisawa J., Sonoyama T., Ui M., Enomoto T., Takio K., Tanaka K., van der Spek P. J., Bootsma D. Purification and cloning of a nucleotide excision repair complex involving the xeroderma pigmentosum group C protein and a human homologue of yeast RAD23. EMBO J. 1994 Apr 15;13(8):1831–1843. doi: 10.1002/j.1460-2075.1994.tb06452.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Mineo C., Murakami Y., Ishimi Y., Hanaoka F., Yamada M. Isolation and analysis of a mammalian temperature-sensitive mutant defective in G2 functions. Exp Cell Res. 1986 Nov;167(1):53–62. doi: 10.1016/0014-4827(86)90203-x. [DOI] [PubMed] [Google Scholar]
  22. Mita S., Yasuda H., Marunouchi T., Ishiko S., Yamada M. A temperature-sensitive mutant of cultured mouse cells defective in chromosome condensation. Exp Cell Res. 1980 Apr;126(2):407–416. doi: 10.1016/0014-4827(80)90280-3. [DOI] [PubMed] [Google Scholar]
  23. Mori M., Eki T., Takahashi-Kudo M., Hanaoka F., Ui M., Enomoto T. Characterization of DNA synthesis at a restrictive temperature in the temperature-sensitive mutants, tsFT5 cells, that belong to the complementation group of ts85 cells containing a thermolabile ubiquitin-activating enzyme E1. Involvement of the ubiquitin-conjugating system in DNA replication. J Biol Chem. 1993 Aug 5;268(22):16803–16809. [PubMed] [Google Scholar]
  24. Murakami Y., Yasuda H., Miyazawa H., Hanaoka F., Yamada M. Characterization of a temperature-sensitive mutant of mouse FM3A cells defective in DNA replication. Proc Natl Acad Sci U S A. 1985 Mar;82(6):1761–1765. doi: 10.1073/pnas.82.6.1761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Murray A. W. Creative blocks: cell-cycle checkpoints and feedback controls. Nature. 1992 Oct 15;359(6396):599–604. doi: 10.1038/359599a0. [DOI] [PubMed] [Google Scholar]
  26. Nakano N. Establishment of cell lines in vitro from a mammary ascites tumor of mouse and biological properties of the established lines in a serum containing medium. Tohoku J Exp Med. 1966 Jan 25;88(1):69–84. doi: 10.1620/tjem.88.69. [DOI] [PubMed] [Google Scholar]
  27. Nichols A. F., Sancar A. Purification of PCNA as a nucleotide excision repair protein. Nucleic Acids Res. 1992 Jul 11;20(13):2441–2446. doi: 10.1093/nar/20.10.2441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Nishida C., Reinhard P., Linn S. DNA repair synthesis in human fibroblasts requires DNA polymerase delta. J Biol Chem. 1988 Jan 5;263(1):501–510. [PubMed] [Google Scholar]
  29. Nishitani H., Goto H., Kaneda S., Yamao F., Seno T., Handley P., Schwartz A. L., Nishimoto T. tsBN75 and tsBN423, temperature-sensitive x-linked mutants of the BHK21 cell line, can be complemented by the ubiquitin-activating enzyme E1 cDNA. Biochem Biophys Res Commun. 1992 Apr 30;184(2):1015–1021. doi: 10.1016/0006-291x(92)90692-e. [DOI] [PubMed] [Google Scholar]
  30. Norbury C., Nurse P. Animal cell cycles and their control. Annu Rev Biochem. 1992;61:441–470. doi: 10.1146/annurev.bi.61.070192.002301. [DOI] [PubMed] [Google Scholar]
  31. O'Neill J. P., Brimer P. A., Machanoff R., Hirsch G. P., Hsie A. W. A quantitative assay of mutation induction at the hypoxanthine-guanine phosphoribosyl transferase locus in Chinese hamster ovary cells (CHO/HGPRT system): development and definition of the system. Mutat Res. 1977 Oct;45(1):91–101. doi: 10.1016/0027-5107(77)90047-1. [DOI] [PubMed] [Google Scholar]
  32. Prakash L. Characterization of postreplication repair in Saccharomyces cerevisiae and effects of rad6, rad18, rev3 and rad52 mutations. Mol Gen Genet. 1981;184(3):471–478. doi: 10.1007/BF00352525. [DOI] [PubMed] [Google Scholar]
  33. Reynolds P., Koken M. H., Hoeijmakers J. H., Prakash S., Prakash L. The rhp6+ gene of Schizosaccharomyces pombe: a structural and functional homolog of the RAD6 gene from the distantly related yeast Saccharomyces cerevisiae. EMBO J. 1990 May;9(5):1423–1430. doi: 10.1002/j.1460-2075.1990.tb08258.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Roche H., Gietz R. D., Kunz B. A. Specificities of the Saccharomyces cerevisiae rad6, rad18, and rad52 mutators exhibit different degrees of dependence on the REV3 gene product, a putative nonessential DNA polymerase. Genetics. 1995 Jun;140(2):443–456. doi: 10.1093/genetics/140.2.443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Roest H. P., van Klaveren J., de Wit J., van Gurp C. G., Koken M. H., Vermey M., van Roijen J. H., Hoogerbrugge J. W., Vreeburg J. T., Baarends W. M. Inactivation of the HR6B ubiquitin-conjugating DNA repair enzyme in mice causes male sterility associated with chromatin modification. Cell. 1996 Sep 6;86(5):799–810. doi: 10.1016/s0092-8674(00)80154-3. [DOI] [PubMed] [Google Scholar]
  36. Scheffner M., Huibregtse J. M., Vierstra R. D., Howley P. M. The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell. 1993 Nov 5;75(3):495–505. doi: 10.1016/0092-8674(93)90384-3. [DOI] [PubMed] [Google Scholar]
  37. Shivji M. K., Podust V. N., Hübscher U., Wood R. D. Nucleotide excision repair DNA synthesis by DNA polymerase epsilon in the presence of PCNA, RFC, and RPA. Biochemistry. 1995 Apr 18;34(15):5011–5017. doi: 10.1021/bi00015a012. [DOI] [PubMed] [Google Scholar]
  38. Spence J., Sadis S., Haas A. L., Finley D. A ubiquitin mutant with specific defects in DNA repair and multiubiquitination. Mol Cell Biol. 1995 Mar;15(3):1265–1273. doi: 10.1128/mcb.15.3.1265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Sung P., Prakash S., Prakash L. Mutation of cysteine-88 in the Saccharomyces cerevisiae RAD6 protein abolishes its ubiquitin-conjugating activity and its various biological functions. Proc Natl Acad Sci U S A. 1990 Apr;87(7):2695–2699. doi: 10.1073/pnas.87.7.2695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Sung P., Prakash S., Prakash L. Stable ester conjugate between the Saccharomyces cerevisiae RAD6 protein and ubiquitin has no biological activity. J Mol Biol. 1991 Oct 5;221(3):745–749. doi: 10.1016/0022-2836(91)80169-u. [DOI] [PubMed] [Google Scholar]
  41. Th'ng J. P., Wright P. S., Hamaguchi J., Lee M. G., Norbury C. J., Nurse P., Bradbury E. M. The FT210 cell line is a mouse G2 phase mutant with a temperature-sensitive CDC2 gene product. Cell. 1990 Oct 19;63(2):313–324. doi: 10.1016/0092-8674(90)90164-a. [DOI] [PubMed] [Google Scholar]
  42. Watkins J. F., Sung P., Prakash L., Prakash S. The Saccharomyces cerevisiae DNA repair gene RAD23 encodes a nuclear protein containing a ubiquitin-like domain required for biological function. Mol Cell Biol. 1993 Dec;13(12):7757–7765. doi: 10.1128/mcb.13.12.7757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Wilcox D. R., Prakash L. Incision and postincision steps of pyrimidine dimer removal in excision-defective mutants of Saccharomyces cerevisiae. J Bacteriol. 1981 Nov;148(2):618–623. doi: 10.1128/jb.148.2.618-623.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Yamada K., Hanaoka F., Yamada M. Effects of aphidicolin and/or 2',3'-dideoxythymidine on DNA repair induced in HeLa cells by four types of DNA-damaging agents. J Biol Chem. 1985 Sep 5;260(19):10412–10417. [PubMed] [Google Scholar]
  45. Yasuda H., Kamijo M., Honda R., Nakamura M., Hanaoka F., Ohba Y. A point mutation in C-terminal region of cdc2 kinase causes a G2-phase arrest in a mouse temperature-sensitive FM3A cell mutant. Cell Struct Funct. 1991 Feb;16(1):105–112. doi: 10.1247/csf.16.105. [DOI] [PubMed] [Google Scholar]
  46. Zeng X. R., Jiang Y., Zhang S. J., Hao H., Lee M. Y. DNA polymerase delta is involved in the cellular response to UV damage in human cells. J Biol Chem. 1994 May 13;269(19):13748–13751. [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES