Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1995 Jan;15(1):12–18. doi: 10.1128/mcb.15.1.12

Growth hormone rapidly activates rat serine protease inhibitor 2.1 gene transcription and induces a DNA-binding activity distinct from those of Stat1, -3, and -4.

M J Thomas 1, A M Gronowski 1, S A Berry 1, P L Bergad 1, P Rotwein 1
PMCID: PMC231902  PMID: 7528325

Abstract

Transcriptional regulation by growth hormone (GH) represents the culmination of signal transduction pathways that are initiated by the cell surface GH receptor and are targeted to the nucleus. Recent studies have demonstrated that the activated GH receptor can stimulate Stat1, a cytoplasmic transcription factor that becomes tyrosine phosphorylated and translocates to the nucleus, where it can interact with specific DNA sequences to modulate gene expression. GH also has been found to induce protein binding to a portion of the rat serine protease inhibitor (Spi) 2.1 gene promoter that is required for GH-induced transcription of Spi 2.1. Using GH-deficient hypophysectomized rats as a model, we show that GH treatment rapidly and potently induces both nuclear Spi 2.1 mRNA expression in the liver and specific nuclear protein binding to a 45-bp segment of the Spi 2.1 gene promoter. A GH-inducible gel-shifted complex appears within 15 min of systemic hormone administration and can be inhibited by an antiphosphotyrosine monoclonal antibody but is not blocked by a polyclonal antiserum to Stat1, Stat3, or Stat4, even though the nucleotide sequence contains two gamma interferon-activated sequence-like elements that could interact with STAT proteins. By Southwestern (DNA-protein) blot analysis, approximately 41- and 35-kDa GH-inducible proteins were detected in hepatic nuclear extracts with the Spi 2.1 DNA probe. Thus, a GH-activated signaling pathway stimulates Spi 2.1 gene expression through a unique mechanism that does not appear to involve known members of the STAT family of transcription factors.

Full Text

The Full Text of this article is available as a PDF (400.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Argetsinger L. S., Campbell G. S., Yang X., Witthuhn B. A., Silvennoinen O., Ihle J. N., Carter-Su C. Identification of JAK2 as a growth hormone receptor-associated tyrosine kinase. Cell. 1993 Jul 30;74(2):237–244. doi: 10.1016/0092-8674(93)90415-m. [DOI] [PubMed] [Google Scholar]
  2. Bichell D. P., Kikuchi K., Rotwein P. Growth hormone rapidly activates insulin-like growth factor I gene transcription in vivo. Mol Endocrinol. 1992 Nov;6(11):1899–1908. doi: 10.1210/mend.6.11.1480177. [DOI] [PubMed] [Google Scholar]
  3. Carey J. Gel retardation. Methods Enzymol. 1991;208:103–117. doi: 10.1016/0076-6879(91)08010-f. [DOI] [PubMed] [Google Scholar]
  4. Casanueva F. F. Physiology of growth hormone secretion and action. Endocrinol Metab Clin North Am. 1992 Sep;21(3):483–517. [PubMed] [Google Scholar]
  5. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  6. Cunningham B. C., Ultsch M., De Vos A. M., Mulkerrin M. G., Clauser K. R., Wells J. A. Dimerization of the extracellular domain of the human growth hormone receptor by a single hormone molecule. Science. 1991 Nov 8;254(5033):821–825. doi: 10.1126/science.1948064. [DOI] [PubMed] [Google Scholar]
  7. Darnell J. E., Jr, Kerr I. M., Stark G. R. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science. 1994 Jun 3;264(5164):1415–1421. doi: 10.1126/science.8197455. [DOI] [PubMed] [Google Scholar]
  8. Daughaday W. H., Rotwein P. Insulin-like growth factors I and II. Peptide, messenger ribonucleic acid and gene structures, serum, and tissue concentrations. Endocr Rev. 1989 Feb;10(1):68–91. doi: 10.1210/edrv-10-1-68. [DOI] [PubMed] [Google Scholar]
  9. Davidson M. B. Effect of growth hormone on carbohydrate and lipid metabolism. Endocr Rev. 1987 May;8(2):115–131. doi: 10.1210/edrv-8-2-115. [DOI] [PubMed] [Google Scholar]
  10. Doglio A., Dani C., Grimaldi P., Ailhaud G. Growth hormone stimulates c-fos gene expression by means of protein kinase C without increasing inositol lipid turnover. Proc Natl Acad Sci U S A. 1989 Feb;86(4):1148–1152. doi: 10.1073/pnas.86.4.1148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dusanter-Fourt I., Muller O., Ziemiecki A., Mayeux P., Drucker B., Djiane J., Wilks A., Harpur A. G., Fischer S., Gisselbrecht S. Identification of JAK protein tyrosine kinases as signaling molecules for prolactin. Functional analysis of prolactin receptor and prolactin-erythropoietin receptor chimera expressed in lymphoid cells. EMBO J. 1994 Jun 1;13(11):2583–2591. doi: 10.1002/j.1460-2075.1994.tb06548.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Finbloom D. S., Petricoin E. F., 3rd, Hackett R. H., David M., Feldman G. M., Igarashi K., Fibach E., Weber M. J., Thorner M. O., Silva C. M. Growth hormone and erythropoietin differentially activate DNA-binding proteins by tyrosine phosphorylation. Mol Cell Biol. 1994 Mar;14(3):2113–2118. doi: 10.1128/mcb.14.3.2113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Fu X. Y. A transcription factor with SH2 and SH3 domains is directly activated by an interferon alpha-induced cytoplasmic protein tyrosine kinase(s). Cell. 1992 Jul 24;70(2):323–335. doi: 10.1016/0092-8674(92)90106-m. [DOI] [PubMed] [Google Scholar]
  14. Fu X. Y., Schindler C., Improta T., Aebersold R., Darnell J. E., Jr The proteins of ISGF-3, the interferon alpha-induced transcriptional activator, define a gene family involved in signal transduction. Proc Natl Acad Sci U S A. 1992 Aug 15;89(16):7840–7843. doi: 10.1073/pnas.89.16.7840. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Fuh G., Cunningham B. C., Fukunaga R., Nagata S., Goeddel D. V., Wells J. A. Rational design of potent antagonists to the human growth hormone receptor. Science. 1992 Jun 19;256(5064):1677–1680. doi: 10.1126/science.256.5064.1677. [DOI] [PubMed] [Google Scholar]
  16. Gorski K., Carneiro M., Schibler U. Tissue-specific in vitro transcription from the mouse albumin promoter. Cell. 1986 Dec 5;47(5):767–776. doi: 10.1016/0092-8674(86)90519-2. [DOI] [PubMed] [Google Scholar]
  17. Gronowski A. M., Rotwein P. Rapid changes in nuclear protein tyrosine phosphorylation after growth hormone treatment in vivo. Identification of phosphorylated mitogen-activated protein kinase and STAT91. J Biol Chem. 1994 Mar 18;269(11):7874–7878. [PubMed] [Google Scholar]
  18. Gurland G., Ashcom G., Cochran B. H., Schwartz J. Rapid events in growth hormone action. Induction of c-fos and c-jun transcription in 3T3-F442A preadipocytes. Endocrinology. 1990 Dec;127(6):3187–3195. doi: 10.1210/endo-127-6-3187. [DOI] [PubMed] [Google Scholar]
  19. Kelly P. A., Ali S., Rozakis M., Goujon L., Nagano M., Pellegrini I., Gould D., Djiane J., Edery M., Finidori J. The growth hormone/prolactin receptor family. Recent Prog Horm Res. 1993;48:123–164. doi: 10.1016/b978-0-12-571148-7.50009-9. [DOI] [PubMed] [Google Scholar]
  20. Kilgour E., Anderson N. G. Growth hormone induces the tyrosine phosphorylation and nuclear accumulation of components of the ISGF3 transcription factor complex. FEBS Lett. 1994 May 2;343(3):205–207. doi: 10.1016/0014-5793(94)80556-3. [DOI] [PubMed] [Google Scholar]
  21. Meyer D. J., Campbell G. S., Cochran B. H., Argetsinger L. S., Larner A. C., Finbloom D. S., Carter-Su C., Schwartz J. Growth hormone induces a DNA binding factor related to the interferon-stimulated 91-kDa transcription factor. J Biol Chem. 1994 Feb 18;269(7):4701–4704. [PubMed] [Google Scholar]
  22. Minami S., Kamegai J., Sugihara H., Hasegawa O., Wakabayashi I. Systemic administration of recombinant human growth hormone induces expression of the c-fos gene in the hypothalamic arcuate and periventricular nuclei in hypophysectomized rats. Endocrinology. 1992 Jul;131(1):247–253. doi: 10.1210/endo.131.1.1612002. [DOI] [PubMed] [Google Scholar]
  23. Ohlsson C., Nilsson A., Isaksson O., Lindahl A. Growth hormone induces multiplication of the slowly cycling germinal cells of the rat tibial growth plate. Proc Natl Acad Sci U S A. 1992 Oct 15;89(20):9826–9830. doi: 10.1073/pnas.89.20.9826. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Paquereau L., Vilarem M. J., Rossi V., Rouayrenc J. F., Le Cam A. Regulation of two rat serine-protease inhibitor gene promoters by somatotropin and glucocorticoids. Study with intact hepatocytes and cell-free systems. Eur J Biochem. 1992 Nov 1;209(3):1053–1061. doi: 10.1111/j.1432-1033.1992.tb17381.x. [DOI] [PubMed] [Google Scholar]
  25. Pearse R. N., Feinman R., Shuai K., Darnell J. E., Jr, Ravetch J. V. Interferon gamma-induced transcription of the high-affinity Fc receptor for IgG requires assembly of a complex that includes the 91-kDa subunit of transcription factor ISGF3. Proc Natl Acad Sci U S A. 1993 May 1;90(9):4314–4318. doi: 10.1073/pnas.90.9.4314. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Press M. Growth hormone and metabolism. Diabetes Metab Rev. 1988 Jun;4(4):391–414. doi: 10.1002/dmr.5610040406. [DOI] [PubMed] [Google Scholar]
  27. Revzin A. Gel electrophoresis assays for DNA-protein interactions. Biotechniques. 1989 Apr;7(4):346–355. [PubMed] [Google Scholar]
  28. Rosenfeld M. G. POU-domain transcription factors: pou-er-ful developmental regulators. Genes Dev. 1991 Jun;5(6):897–907. doi: 10.1101/gad.5.6.897. [DOI] [PubMed] [Google Scholar]
  29. Rossi V., Rouayrenc J. F., Paquereau L., Vilarem M. J., Le Cam A. Analysis of proteins binding to the proximal promoter region of two rat serine protease inhibitor genes. Nucleic Acids Res. 1992 Mar 11;20(5):1061–1068. doi: 10.1093/nar/20.5.1061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Ruff-Jamison S., Chen K., Cohen S. Induction by EGF and interferon-gamma of tyrosine phosphorylated DNA binding proteins in mouse liver nuclei. Science. 1993 Sep 24;261(5129):1733–1736. doi: 10.1126/science.8378774. [DOI] [PubMed] [Google Scholar]
  31. Rui H., Kirken R. A., Farrar W. L. Activation of receptor-associated tyrosine kinase JAK2 by prolactin. J Biol Chem. 1994 Feb 18;269(7):5364–5368. [PubMed] [Google Scholar]
  32. Sadowski H. B., Shuai K., Darnell J. E., Jr, Gilman M. Z. A common nuclear signal transduction pathway activated by growth factor and cytokine receptors. Science. 1993 Sep 24;261(5129):1739–1744. doi: 10.1126/science.8397445. [DOI] [PubMed] [Google Scholar]
  33. Sargent T. D., Jagodzinski L. L., Yang M., Bonner J. Fine structure and evolution of the rat serum albumin gene. Mol Cell Biol. 1981 Oct;1(10):871–883. doi: 10.1128/mcb.1.10.871. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Schindler C., Shuai K., Prezioso V. R., Darnell J. E., Jr Interferon-dependent tyrosine phosphorylation of a latent cytoplasmic transcription factor. Science. 1992 Aug 7;257(5071):809–813. doi: 10.1126/science.1496401. [DOI] [PubMed] [Google Scholar]
  35. Shuai K., Horvath C. M., Huang L. H., Qureshi S. A., Cowburn D., Darnell J. E., Jr Interferon activation of the transcription factor Stat91 involves dimerization through SH2-phosphotyrosyl peptide interactions. Cell. 1994 Mar 11;76(5):821–828. doi: 10.1016/0092-8674(94)90357-3. [DOI] [PubMed] [Google Scholar]
  36. Shuai K., Schindler C., Prezioso V. R., Darnell J. E., Jr Activation of transcription by IFN-gamma: tyrosine phosphorylation of a 91-kD DNA binding protein. Science. 1992 Dec 11;258(5089):1808–1812. doi: 10.1126/science.1281555. [DOI] [PubMed] [Google Scholar]
  37. Shuai K., Stark G. R., Kerr I. M., Darnell J. E., Jr A single phosphotyrosine residue of Stat91 required for gene activation by interferon-gamma. Science. 1993 Sep 24;261(5129):1744–1746. doi: 10.1126/science.7690989. [DOI] [PubMed] [Google Scholar]
  38. Shuai K., Ziemiecki A., Wilks A. F., Harpur A. G., Sadowski H. B., Gilman M. Z., Darnell J. E. Polypeptide signalling to the nucleus through tyrosine phosphorylation of Jak and Stat proteins. Nature. 1993 Dec 9;366(6455):580–583. doi: 10.1038/366580a0. [DOI] [PubMed] [Google Scholar]
  39. Silvennoinen O., Ihle J. N., Schlessinger J., Levy D. E. Interferon-induced nuclear signalling by Jak protein tyrosine kinases. Nature. 1993 Dec 9;366(6455):583–585. doi: 10.1038/366583a0. [DOI] [PubMed] [Google Scholar]
  40. Silvennoinen O., Schindler C., Schlessinger J., Levy D. E. Ras-independent growth factor signaling by transcription factor tyrosine phosphorylation. Science. 1993 Sep 24;261(5129):1736–1739. doi: 10.1126/science.8378775. [DOI] [PubMed] [Google Scholar]
  41. Silvennoinen O., Witthuhn B. A., Quelle F. W., Cleveland J. L., Yi T., Ihle J. N. Structure of the murine Jak2 protein-tyrosine kinase and its role in interleukin 3 signal transduction. Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8429–8433. doi: 10.1073/pnas.90.18.8429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Singh H., Clerc R. G., LeBowitz J. H. Molecular cloning of sequence-specific DNA binding proteins using recognition site probes. Biotechniques. 1989 Mar;7(3):252–261. [PubMed] [Google Scholar]
  43. Slootweg M. C., de Groot R. P., Herrmann-Erlee M. P., Koornneef I., Kruijer W., Kramer Y. M. Growth hormone induces expression of c-jun and jun B oncogenes and employs a protein kinase C signal transduction pathway for the induction of c-fos oncogene expression. J Mol Endocrinol. 1991 Apr;6(2):179–188. doi: 10.1677/jme.0.0060179. [DOI] [PubMed] [Google Scholar]
  44. Stahl N., Boulton T. G., Farruggella T., Ip N. Y., Davis S., Witthuhn B. A., Quelle F. W., Silvennoinen O., Barbieri G., Pellegrini S. Association and activation of Jak-Tyk kinases by CNTF-LIF-OSM-IL-6 beta receptor components. Science. 1994 Jan 7;263(5143):92–95. doi: 10.1126/science.8272873. [DOI] [PubMed] [Google Scholar]
  45. Strobl J. S., Thomas M. J. Human growth hormone. Pharmacol Rev. 1994 Mar;46(1):1–34. [PubMed] [Google Scholar]
  46. Thomas M. J., Kikuchi K., Bichell D. P., Rotwein P. Rapid activation of rat insulin-like growth factor-I gene transcription by growth hormone reveals no alterations in deoxyribonucleic acid-protein interactions within the major promoter. Endocrinology. 1994 Oct;135(4):1584–1592. doi: 10.1210/endo.135.4.7925121. [DOI] [PubMed] [Google Scholar]
  47. Treisman R. The serum response element. Trends Biochem Sci. 1992 Oct;17(10):423–426. doi: 10.1016/0968-0004(92)90013-y. [DOI] [PubMed] [Google Scholar]
  48. Wagner B. J., Hayes T. E., Hoban C. J., Cochran B. H. The SIF binding element confers sis/PDGF inducibility onto the c-fos promoter. EMBO J. 1990 Dec;9(13):4477–4484. doi: 10.1002/j.1460-2075.1990.tb07898.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Watling D., Guschin D., Müller M., Silvennoinen O., Witthuhn B. A., Quelle F. W., Rogers N. C., Schindler C., Stark G. R., Ihle J. N. Complementation by the protein tyrosine kinase JAK2 of a mutant cell line defective in the interferon-gamma signal transduction pathway. Nature. 1993 Nov 11;366(6451):166–170. doi: 10.1038/366166a0. [DOI] [PubMed] [Google Scholar]
  50. Wells J. A., Cunningham B. C., Fuh G., Lowman H. B., Bass S. H., Mulkerrin M. G., Ultsch M., deVos A. M. The molecular basis for growth hormone-receptor interactions. Recent Prog Horm Res. 1993;48:253–275. [PubMed] [Google Scholar]
  51. Witthuhn B. A., Quelle F. W., Silvennoinen O., Yi T., Tang B., Miura O., Ihle J. N. JAK2 associates with the erythropoietin receptor and is tyrosine phosphorylated and activated following stimulation with erythropoietin. Cell. 1993 Jul 30;74(2):227–236. doi: 10.1016/0092-8674(93)90414-l. [DOI] [PubMed] [Google Scholar]
  52. Yamamoto K., Quelle F. W., Thierfelder W. E., Kreider B. L., Gilbert D. J., Jenkins N. A., Copeland N. G., Silvennoinen O., Ihle J. N. Stat4, a novel gamma interferon activation site-binding protein expressed in early myeloid differentiation. Mol Cell Biol. 1994 Jul;14(7):4342–4349. doi: 10.1128/mcb.14.7.4342. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Yoon J. B., Berry S. A., Seelig S., Towle H. C. An inducible nuclear factor binds to a growth hormone-regulated gene. J Biol Chem. 1990 Nov 15;265(32):19947–19954. [PubMed] [Google Scholar]
  54. Yoon J. B., Towle H. C., Seelig S. Growth hormone induces two mRNA species of the serine protease inhibitor gene family in rat liver. J Biol Chem. 1987 Mar 25;262(9):4284–4289. [PubMed] [Google Scholar]
  55. Zhong Z., Wen Z., Darnell J. E., Jr Stat3 and Stat4: members of the family of signal transducers and activators of transcription. Proc Natl Acad Sci U S A. 1994 May 24;91(11):4806–4810. doi: 10.1073/pnas.91.11.4806. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Zhong Z., Wen Z., Darnell J. E., Jr Stat3: a STAT family member activated by tyrosine phosphorylation in response to epidermal growth factor and interleukin-6. Science. 1994 Apr 1;264(5155):95–98. doi: 10.1126/science.8140422. [DOI] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES