Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1995 Jan;15(1):45–51. doi: 10.1128/mcb.15.1.45

Analysis of biological selections for high-efficiency gene targeting.

K D Hanson 1, J M Sedivy 1
PMCID: PMC231906  PMID: 7799954

Abstract

A two-marker selection system that allows the efficient isolation of diploid gene knockouts by two sequential rounds of targeted homologous recombination has been developed. A systematic evaluation of the biological parameters that govern the selection process showed that a successful strategy must match the expression level of the target gene, the efficacy of the marker, and the selection stringency. An enrichment ratio of 5,000- to 10,000-fold, which resulted in a 30% targeting efficiency of the c-myc gene in a fibroblast cell line, has been achieved. Such efficiency brings the difficulty of gene targeting effectively down to the level of simple transfections, since only 10 to 20 drug-resistant clones need to be screened to recover several homologous hits. The general utility of the targeting strategy is of interest to investigators studying gene function in a large variety of mammalian tissue culture systems.

Full Text

The Full Text of this article is available as a PDF (288.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arbonés M. L., Austin H. A., Capon D. J., Greenburg G. Gene targeting in normal somatic cells: inactivation of the interferon-gamma receptor in myoblasts. Nat Genet. 1994 Jan;6(1):90–97. doi: 10.1038/ng0194-90. [DOI] [PubMed] [Google Scholar]
  2. Ashman C. R., Davidson R. L. Sequence analysis of spontaneous mutations in a shuttle vector gene integrated into mammalian chromosomal DNA. Proc Natl Acad Sci U S A. 1987 May;84(10):3354–3358. doi: 10.1073/pnas.84.10.3354. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Blochlinger K., Diggelmann H. Hygromycin B phosphotransferase as a selectable marker for DNA transfer experiments with higher eucaryotic cells. Mol Cell Biol. 1984 Dec;4(12):2929–2931. doi: 10.1128/mcb.4.12.2929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bollag R. J., Waldman A. S., Liskay R. M. Homologous recombination in mammalian cells. Annu Rev Genet. 1989;23:199–225. doi: 10.1146/annurev.ge.23.120189.001215. [DOI] [PubMed] [Google Scholar]
  5. Boylan J. F., Lohnes D., Taneja R., Chambon P., Gudas L. J. Loss of retinoic acid receptor gamma function in F9 cells by gene disruption results in aberrant Hoxa-1 expression and differentiation upon retinoic acid treatment. Proc Natl Acad Sci U S A. 1993 Oct 15;90(20):9601–9605. doi: 10.1073/pnas.90.20.9601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chasin L. A. The effect of ploidy on chemical mutagenesis in cultured Chinese hamster cells. J Cell Physiol. 1973 Oct;82(2):299–307. doi: 10.1002/jcp.1040820218. [DOI] [PubMed] [Google Scholar]
  7. Chasin L. A., Urlaub G. Mutant alleles for hypoxanthine phosphoriboxyltransferase: codominant expression, complementation, and segregation in hybrid Chinese hamster cells. Somatic Cell Genet. 1976 Sep;2(5):453–467. doi: 10.1007/BF01542725. [DOI] [PubMed] [Google Scholar]
  8. Cisek L. J., Corden J. L. Purification of protein kinases that phosphorylate the repetitive carboxyl-terminal domain of eukaryotic RNA polymerase II. Methods Enzymol. 1991;200:301–325. doi: 10.1016/0076-6879(91)00148-p. [DOI] [PubMed] [Google Scholar]
  9. Cone R. D., Reilly E. B., Eisen H. N., Mulligan R. C. Tissue-specific expression of functionally rearranged lambda 1 Ig gene through a retrovirus vector. Science. 1987 May 22;236(4804):954–957. doi: 10.1126/science.3107128. [DOI] [PubMed] [Google Scholar]
  10. DeGregori J., Russ A., von Melchner H., Rayburn H., Priyaranjan P., Jenkins N. A., Copeland N. G., Ruley H. E. A murine homolog of the yeast RNA1 gene is required for postimplantation development. Genes Dev. 1994 Feb 1;8(3):265–276. doi: 10.1101/gad.8.3.265. [DOI] [PubMed] [Google Scholar]
  11. Doetschman T., Maeda N., Smithies O. Targeted mutation of the Hprt gene in mouse embryonic stem cells. Proc Natl Acad Sci U S A. 1988 Nov;85(22):8583–8587. doi: 10.1073/pnas.85.22.8583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Dorin J. R., Inglis J. D., Porteous D. J. Selection for precise chromosomal targeting of a dominant marker by homologous recombination. Science. 1989 Mar 10;243(4896):1357–1360. doi: 10.1126/science.2538001. [DOI] [PubMed] [Google Scholar]
  13. Eilers M., Picard D., Yamamoto K. R., Bishop J. M. Chimaeras of myc oncoprotein and steroid receptors cause hormone-dependent transformation of cells. Nature. 1989 Jul 6;340(6228):66–68. doi: 10.1038/340066a0. [DOI] [PubMed] [Google Scholar]
  14. Friedrich G., Soriano P. Promoter traps in embryonic stem cells: a genetic screen to identify and mutate developmental genes in mice. Genes Dev. 1991 Sep;5(9):1513–1523. doi: 10.1101/gad.5.9.1513. [DOI] [PubMed] [Google Scholar]
  15. Gossler A., Joyner A. L., Rossant J., Skarnes W. C. Mouse embryonic stem cells and reporter constructs to detect developmentally regulated genes. Science. 1989 Apr 28;244(4903):463–465. doi: 10.1126/science.2497519. [DOI] [PubMed] [Google Scholar]
  16. Hanson K. D., Shichiri M., Follansbee M. R., Sedivy J. M. Effects of c-myc expression on cell cycle progression. Mol Cell Biol. 1994 Sep;14(9):5748–5755. doi: 10.1128/mcb.14.9.5748. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hartman S. C., Mulligan R. C. Two dominant-acting selectable markers for gene transfer studies in mammalian cells. Proc Natl Acad Sci U S A. 1988 Nov;85(21):8047–8051. doi: 10.1073/pnas.85.21.8047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Huang K. P., Huang F. L. Purification and analysis of protein kinase C isozymes. Methods Enzymol. 1991;200:241–252. doi: 10.1016/0076-6879(91)00144-l. [DOI] [PubMed] [Google Scholar]
  19. Jackson S. P., Tjian R. Purification and analysis of RNA polymerase II transcription factors by using wheat germ agglutinin affinity chromatography. Proc Natl Acad Sci U S A. 1989 Mar;86(6):1781–1785. doi: 10.1073/pnas.86.6.1781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Jasin M., Berg P. Homologous integration in mammalian cells without target gene selection. Genes Dev. 1988 Nov;2(11):1353–1363. doi: 10.1101/gad.2.11.1353. [DOI] [PubMed] [Google Scholar]
  21. Jeannotte L., Ruiz J. C., Robertson E. J. Low level of Hox1.3 gene expression does not preclude the use of promoterless vectors to generate a targeted gene disruption. off. Mol Cell Biol. 1991 Nov;11(11):5578–5585. doi: 10.1128/mcb.11.11.5578. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Mansour S. L., Thomas K. R., Capecchi M. R. Disruption of the proto-oncogene int-2 in mouse embryo-derived stem cells: a general strategy for targeting mutations to non-selectable genes. Nature. 1988 Nov 24;336(6197):348–352. doi: 10.1038/336348a0. [DOI] [PubMed] [Google Scholar]
  23. Mortensen R. M., Conner D. A., Chao S., Geisterfer-Lowrance A. A., Seidman J. G. Production of homozygous mutant ES cells with a single targeting construct. Mol Cell Biol. 1992 May;12(5):2391–2395. doi: 10.1128/mcb.12.5.2391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Mulligan R. C., Berg P. Selection for animal cells that express the Escherichia coli gene coding for xanthine-guanine phosphoribosyltransferase. Proc Natl Acad Sci U S A. 1981 Apr;78(4):2072–2076. doi: 10.1073/pnas.78.4.2072. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Pfeuffer E., Mollner S., Pfeuffer T. Purification of adenylyl cyclase from heart and brain. Methods Enzymol. 1991;195:83–91. doi: 10.1016/0076-6879(91)95156-e. [DOI] [PubMed] [Google Scholar]
  26. Prouty S. M., Hanson K. D., Boyle A. L., Brown J. R., Shichiri M., Follansbee M. R., Kang W., Sedivy J. M. A cell culture model system for genetic analyses of the cell cycle by targeted homologous recombination. Oncogene. 1993 Apr;8(4):899–907. [PubMed] [Google Scholar]
  27. Sedivy J. M., Sharp P. A. Positive genetic selection for gene disruption in mammalian cells by homologous recombination. Proc Natl Acad Sci U S A. 1989 Jan;86(1):227–231. doi: 10.1073/pnas.86.1.227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Shichiri M., Hanson K. D., Sedivy J. M. Effects of c-myc expression on proliferation, quiescence, and the G0 to G1 transition in nontransformed cells. Cell Growth Differ. 1993 Feb;4(2):93–104. [PubMed] [Google Scholar]
  29. Siminovitch L. On the nature of hereditable variation in cultured somatic cells. Cell. 1976 Jan;7(1):1–11. doi: 10.1016/0092-8674(76)90249-x. [DOI] [PubMed] [Google Scholar]
  30. Southern P. J., Berg P. Transformation of mammalian cells to antibiotic resistance with a bacterial gene under control of the SV40 early region promoter. J Mol Appl Genet. 1982;1(4):327–341. [PubMed] [Google Scholar]
  31. Waldman A. S. Targeted homologous recombination in mammalian cells. Crit Rev Oncol Hematol. 1992 Jan;12(1):49–64. doi: 10.1016/1040-8428(92)90064-w. [DOI] [PubMed] [Google Scholar]
  32. Yagi T., Ikawa Y., Yoshida K., Shigetani Y., Takeda N., Mabuchi I., Yamamoto T., Aizawa S. Homologous recombination at c-fyn locus of mouse embryonic stem cells with use of diphtheria toxin A-fragment gene in negative selection. Proc Natl Acad Sci U S A. 1990 Dec;87(24):9918–9922. doi: 10.1073/pnas.87.24.9918. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Yenofsky R. L., Fine M., Pellow J. W. A mutant neomycin phosphotransferase II gene reduces the resistance of transformants to antibiotic selection pressure. Proc Natl Acad Sci U S A. 1990 May;87(9):3435–3439. doi: 10.1073/pnas.87.9.3435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. te Riele H., Maandag E. R., Clarke A., Hooper M., Berns A. Consecutive inactivation of both alleles of the pim-1 proto-oncogene by homologous recombination in embryonic stem cells. Nature. 1990 Dec 13;348(6302):649–651. doi: 10.1038/348649a0. [DOI] [PubMed] [Google Scholar]
  35. von Melchner H., DeGregori J. V., Rayburn H., Reddy S., Friedel C., Ruley H. E. Selective disruption of genes expressed in totipotent embryonal stem cells. Genes Dev. 1992 Jun;6(6):919–927. doi: 10.1101/gad.6.6.919. [DOI] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES