Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1995 Jan;15(1):165–172. doi: 10.1128/mcb.15.1.165

Characterization of DNA synthesis and DNA-dependent ATPase activity at a restrictive temperature in temperature-sensitive tsFT848 cells with thermolabile DNA helicase B.

M Seki 1, T Kohda 1, T Yano 1, S Tada 1, J Yanagisawa 1, T Eki 1, M Ui 1, T Enomoto 1
PMCID: PMC231927  PMID: 7799922

Abstract

A temperature-sensitive mutant defective in DNA replication, tsFT848, was isolated from the mouse mammary carcinoma cell line FM3A. In mutant cells, the DNA-dependent ATPase activity of DNA helicase B, which is a major DNA-dependent ATPase in wild-type cells, decreased at the nonpermissive temperature of 39 degrees C. DNA synthesis in tsFT848 cells at the nonpermissive temperature was analyzed in detail. DNA synthesis measured by incorporation of [3H]thymidine decreased to about 50% and less than 10% of the initial level at 8 and 12 h, respectively. The decrease in the level of thymidine incorporation correlated with a decrease in the number of silver grains in individual nuclei but not with the number of cells with labeled nuclei. DNA fiber autoradiography revealed that the DNA chain elongation rate did not decrease even after an incubation for 10 h at 39 degrees C, suggesting that initiation of DNA replication at the origin of replicons is impaired in the mutant cells. The decrease in DNA-synthesizing ability coincided with a decrease in the level of the DNA-dependent ATPase activity of DNA helicase B. Partially purified DNA helicase B from tsFT848 cells was more heat sensitive than that from wild-type cells. Inactivation of DNA-dependent ATPase activity of DNA helicase B from mutant cells was considerably reduced by adding DNA to the medium used for preincubation, indicating that the DNA helicase of mutant cells is stabilized by binding to DNA.

Full Text

The Full Text of this article is available as a PDF (273.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Biswas E. E., Chen P. H., Biswas S. B. DNA helicase associated with DNA polymerase alpha: isolation by a modified immunoaffinity chromatography. Biochemistry. 1993 Dec 14;32(49):13393–13398. doi: 10.1021/bi00212a003. [DOI] [PubMed] [Google Scholar]
  2. Borowiec J. A., Dean F. B., Bullock P. A., Hurwitz J. Binding and unwinding--how T antigen engages the SV40 origin of DNA replication. Cell. 1990 Jan 26;60(2):181–184. doi: 10.1016/0092-8674(90)90730-3. [DOI] [PubMed] [Google Scholar]
  3. Bruckner R. C., Crute J. J., Dodson M. S., Lehman I. R. The herpes simplex virus 1 origin binding protein: a DNA helicase. J Biol Chem. 1991 Feb 5;266(4):2669–2674. [PubMed] [Google Scholar]
  4. Dodson M. S., Lehman I. R. Association of DNA helicase and primase activities with a subassembly of the herpes simplex virus 1 helicase-primase composed of the UL5 and UL52 gene products. Proc Natl Acad Sci U S A. 1991 Feb 15;88(4):1105–1109. doi: 10.1073/pnas.88.4.1105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Drapkin R., Reardon J. T., Ansari A., Huang J. C., Zawel L., Ahn K., Sancar A., Reinberg D. Dual role of TFIIH in DNA excision repair and in transcription by RNA polymerase II. Nature. 1994 Apr 21;368(6473):769–772. doi: 10.1038/368769a0. [DOI] [PubMed] [Google Scholar]
  6. Drapkin R., Sancar A., Reinberg D. Where transcription meets repair. Cell. 1994 Apr 8;77(1):9–12. doi: 10.1016/0092-8674(94)90228-3. [DOI] [PubMed] [Google Scholar]
  7. Eki T., Enomoto T., Miyajima A., Miyazawa H., Murakami Y., Hanaoka F., Yamada M., Ui M. Isolation of temperature-sensitive cell cycle mutants from mouse FM3A cells. Characterization of mutants with special reference to DNA replication. J Biol Chem. 1990 Jan 5;265(1):26–33. [PubMed] [Google Scholar]
  8. Flejter W. L., McDaniel L. D., Johns D., Friedberg E. C., Schultz R. A. Correction of xeroderma pigmentosum complementation group D mutant cell phenotypes by chromosome and gene transfer: involvement of the human ERCC2 DNA repair gene. Proc Natl Acad Sci U S A. 1992 Jan 1;89(1):261–265. doi: 10.1073/pnas.89.1.261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Foury F., Lahaye A. Cloning and sequencing of the PIF gene involved in repair and recombination of yeast mitochondrial DNA. EMBO J. 1987 May;6(5):1441–1449. doi: 10.1002/j.1460-2075.1987.tb02385.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Friedberg E. C. Xeroderma pigmentosum, Cockayne's syndrome, helicases, and DNA repair: what's the relationship? Cell. 1992 Dec 11;71(6):887–889. doi: 10.1016/0092-8674(92)90384-o. [DOI] [PubMed] [Google Scholar]
  11. Georgaki A., Tuteja N., Sturzenegger B., Hübscher U. Calf thymus DNA helicase F, a replication protein A copurifying enzyme. Nucleic Acids Res. 1994 Apr 11;22(7):1128–1134. doi: 10.1093/nar/22.7.1128. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Harosh I., Naumovski L., Friedberg E. C. Purification and characterization of Rad3 ATPase/DNA helicase from Saccharomyces cerevisiae. J Biol Chem. 1989 Dec 5;264(34):20532–20539. [PubMed] [Google Scholar]
  13. Hurwitz J., Dean F. B., Kwong A. D., Lee S. H. The in vitro replication of DNA containing the SV40 origin. J Biol Chem. 1990 Oct 25;265(30):18043–18046. [PubMed] [Google Scholar]
  14. Ishimi Y., Matsumoto K. Model system for DNA replication of a plasmid DNA containing the autonomously replicating sequence from Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1993 Jun 15;90(12):5399–5403. doi: 10.1073/pnas.90.12.5399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kelly T. J. SV40 DNA replication. J Biol Chem. 1988 Dec 5;263(34):17889–17892. [PubMed] [Google Scholar]
  16. Korn L. J., Yanofsky C. Polarity suppressors defective in transcription termination at the attenuator of the tryptophan operon of Escherichia coli have altered rho factor. J Mol Biol. 1976 Sep 15;106(2):231–241. doi: 10.1016/0022-2836(76)90082-6. [DOI] [PubMed] [Google Scholar]
  17. Lahaye A., Stahl H., Thines-Sempoux D., Foury F. PIF1: a DNA helicase in yeast mitochondria. EMBO J. 1991 Apr;10(4):997–1007. doi: 10.1002/j.1460-2075.1991.tb08034.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lawrence C. W., Christensen R. B. Metabolic suppressors of trimethoprim and ultraviolet light sensitivities of Saccharomyces cerevisiae rad6 mutants. J Bacteriol. 1979 Sep;139(3):866–876. doi: 10.1128/jb.139.3.866-876.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Li X., Tan C. K., So A. G., Downey K. M. Purification and characterization of delta helicase from fetal calf thymus. Biochemistry. 1992 Apr 7;31(13):3507–3513. doi: 10.1021/bi00128a027. [DOI] [PubMed] [Google Scholar]
  20. Lohman T. M. Helicase-catalyzed DNA unwinding. J Biol Chem. 1993 Feb 5;268(4):2269–2272. [PubMed] [Google Scholar]
  21. Matson S. W., Bean D. W., George J. W. DNA helicases: enzymes with essential roles in all aspects of DNA metabolism. Bioessays. 1994 Jan;16(1):13–22. doi: 10.1002/bies.950160103. [DOI] [PubMed] [Google Scholar]
  22. Mori M., Eki T., Takahashi-Kudo M., Hanaoka F., Ui M., Enomoto T. Characterization of DNA synthesis at a restrictive temperature in the temperature-sensitive mutants, tsFT5 cells, that belong to the complementation group of ts85 cells containing a thermolabile ubiquitin-activating enzyme E1. Involvement of the ubiquitin-conjugating system in DNA replication. J Biol Chem. 1993 Aug 5;268(22):16803–16809. [PubMed] [Google Scholar]
  23. Murakami Y., Eki T., Yamada M., Prives C., Hurwitz J. Species-specific in vitro synthesis of DNA containing the polyoma virus origin of replication. Proc Natl Acad Sci U S A. 1986 Sep;83(17):6347–6351. doi: 10.1073/pnas.83.17.6347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Murakami Y., Yasuda H., Miyazawa H., Hanaoka F., Yamada M. Characterization of a temperature-sensitive mutant of mouse FM3A cells defective in DNA replication. Proc Natl Acad Sci U S A. 1985 Mar;82(6):1761–1765. doi: 10.1073/pnas.82.6.1761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Nakano N. Establishment of cell lines in vitro from a mammary ascites tumor of mouse and biological properties of the established lines in a serum containing medium. Tohoku J Exp Med. 1966 Jan 25;88(1):69–84. doi: 10.1620/tjem.88.69. [DOI] [PubMed] [Google Scholar]
  26. Naumovski L., Chu G., Berg P., Friedberg E. C. RAD3 gene of Saccharomyces cerevisiae: nucleotide sequence of wild-type and mutant alleles, transcript mapping, and aspects of gene regulation. Mol Cell Biol. 1985 Jan;5(1):17–26. doi: 10.1128/mcb.5.1.17. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Rong L., Klein H. L. Purification and characterization of the SRS2 DNA helicase of the yeast Saccharomyces cerevisiae. J Biol Chem. 1993 Jan 15;268(2):1252–1259. [PubMed] [Google Scholar]
  28. Sakurai T., Suzuki M., Yoshida S. DNA helicases associated with DNA polymerases from human cells. Biochem Mol Biol Int. 1993 Mar;29(3):565–577. [PubMed] [Google Scholar]
  29. Schaeffer L., Moncollin V., Roy R., Staub A., Mezzina M., Sarasin A., Weeda G., Hoeijmakers J. H., Egly J. M. The ERCC2/DNA repair protein is associated with the class II BTF2/TFIIH transcription factor. EMBO J. 1994 May 15;13(10):2388–2392. doi: 10.1002/j.1460-2075.1994.tb06522.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Schaeffer L., Roy R., Humbert S., Moncollin V., Vermeulen W., Hoeijmakers J. H., Chambon P., Egly J. M. DNA repair helicase: a component of BTF2 (TFIIH) basic transcription factor. Science. 1993 Apr 2;260(5104):58–63. doi: 10.1126/science.8465201. [DOI] [PubMed] [Google Scholar]
  31. Seki M., Enomoto T., Eki T., Miyajima A., Murakami Y., Hanaoka F., Ui M. DNA helicase and nucleoside-5'-triphosphatase activities of polyoma virus large tumor antigen. Biochemistry. 1990 Jan 30;29(4):1003–1009. doi: 10.1021/bi00456a024. [DOI] [PubMed] [Google Scholar]
  32. Seki M., Enomoto T., Hanaoka F., Yamada M. DNA-dependent adenosinetriphosphatase B from mouse FM3A cells has DNA helicase activity. Biochemistry. 1987 May 19;26(10):2924–2928. doi: 10.1021/bi00384a038. [DOI] [PubMed] [Google Scholar]
  33. Seki M., Enomoto T., Watanabe Y., Tawaragi Y., Kawasaki K., Hanaoka F., Yamada M. Purification and characterization of a deoxyribonucleic acid dependent adenosinetriphosphatase from mouse FM3A cells: effects of ribonucleoside triphosphates on the interaction of the enzyme with single-stranded DNA. Biochemistry. 1986 Jun 3;25(11):3239–3245. doi: 10.1021/bi00359a024. [DOI] [PubMed] [Google Scholar]
  34. Seki M., Enomoto T., Yanagisawa J., Hanaoka F., Ui M. Further characterization of DNA helicase activity of mouse DNA-dependent adenosinetriphosphatase B (DNA helicase B). Biochemistry. 1988 Mar 8;27(5):1766–1771. doi: 10.1021/bi00405a057. [DOI] [PubMed] [Google Scholar]
  35. Seo Y. S., Hurwitz J. Isolation of helicase alpha, a DNA helicase from HeLa cells stimulated by a fork structure and signal-stranded DNA-binding proteins. J Biol Chem. 1993 May 15;268(14):10282–10295. [PubMed] [Google Scholar]
  36. Seo Y. S., Lee S. H., Hurwitz J. Isolation of a DNA helicase from HeLa cells requiring the multisubunit human single-stranded DNA-binding protein for activity. J Biol Chem. 1991 Jul 15;266(20):13161–13170. [PubMed] [Google Scholar]
  37. Seo Y. S., Müller F., Lusky M., Hurwitz J. Bovine papilloma virus (BPV)-encoded E1 protein contains multiple activities required for BPV DNA replication. Proc Natl Acad Sci U S A. 1993 Jan 15;90(2):702–706. doi: 10.1073/pnas.90.2.702. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Siegal G., Turchi J. J., Jessee C. B., Myers T. W., Bambara R. A. A novel DNA helicase from calf thymus. J Biol Chem. 1992 Jul 5;267(19):13629–13635. [PubMed] [Google Scholar]
  39. Stillman B. Initiation of eukaryotic DNA replication in vitro. Annu Rev Cell Biol. 1989;5:197–245. doi: 10.1146/annurev.cb.05.110189.001213. [DOI] [PubMed] [Google Scholar]
  40. Sung P., Bailly V., Weber C., Thompson L. H., Prakash L., Prakash S. Human xeroderma pigmentosum group D gene encodes a DNA helicase. Nature. 1993 Oct 28;365(6449):852–855. doi: 10.1038/365852a0. [DOI] [PubMed] [Google Scholar]
  41. Sung P., Prakash L., Matson S. W., Prakash S. RAD3 protein of Saccharomyces cerevisiae is a DNA helicase. Proc Natl Acad Sci U S A. 1987 Dec;84(24):8951–8955. doi: 10.1073/pnas.84.24.8951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Thömmes P., Ferrari E., Jessberger R., Hübscher U. Four different DNA helicases from calf thymus. J Biol Chem. 1992 Mar 25;267(9):6063–6073. [PubMed] [Google Scholar]
  43. Thömmes P., Hübscher U. DNA helicase from calf thymus. Purification to apparent homogeneity and biochemical characterization of the enzyme. J Biol Chem. 1990 Aug 25;265(24):14347–14354. [PubMed] [Google Scholar]
  44. Thömmes P., Hübscher U. Eukaryotic DNA helicases: essential enzymes for DNA transactions. Chromosoma. 1992 Jun;101(8):467–473. doi: 10.1007/BF00352468. [DOI] [PubMed] [Google Scholar]
  45. Tsai Y. J., Hanaoka F., Nakano M. M., Yamada M. A mammalian DNA- mutant decreasing nuclear DNA polymerase alpha activity at nonpermissive temperature. Biochem Biophys Res Commun. 1979 Dec 14;91(3):1190–1195. doi: 10.1016/0006-291x(79)92005-9. [DOI] [PubMed] [Google Scholar]
  46. Weber C. A., Salazar E. P., Stewart S. A., Thompson L. H. ERCC2: cDNA cloning and molecular characterization of a human nucleotide excision repair gene with high homology to yeast RAD3. EMBO J. 1990 May;9(5):1437–1447. doi: 10.1002/j.1460-2075.1990.tb08260.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Weeda G., Hoeijmakers J. H., Bootsma D. Genes controlling nucleotide excision repair in eukaryotic cells. Bioessays. 1993 Apr;15(4):249–258. doi: 10.1002/bies.950150405. [DOI] [PubMed] [Google Scholar]
  48. Weeda G., van Ham R. C., Masurel R., Westerveld A., Odijk H., de Wit J., Bootsma D., van der Eb A. J., Hoeijmakers J. H. Molecular cloning and biological characterization of the human excision repair gene ERCC-3. Mol Cell Biol. 1990 Jun;10(6):2570–2581. doi: 10.1128/mcb.10.6.2570. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Weeda G., van Ham R. C., Vermeulen W., Bootsma D., van der Eb A. J., Hoeijmakers J. H. A presumed DNA helicase encoded by ERCC-3 is involved in the human repair disorders xeroderma pigmentosum and Cockayne's syndrome. Cell. 1990 Aug 24;62(4):777–791. doi: 10.1016/0092-8674(90)90122-u. [DOI] [PubMed] [Google Scholar]
  50. Yang L., Mohr I., Fouts E., Lim D. A., Nohaile M., Botchan M. The E1 protein of bovine papilloma virus 1 is an ATP-dependent DNA helicase. Proc Natl Acad Sci U S A. 1993 Jun 1;90(11):5086–5090. doi: 10.1073/pnas.90.11.5086. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES