Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1995 Feb;15(2):790–795. doi: 10.1128/mcb.15.2.790

Effects of butyrate and glucocorticoids on gamma- to beta-globin gene switching in somatic cell hybrids.

G Zitnik 1, K Peterson 1, G Stamatoyannopoulos 1, T Papayannopoulou 1
PMCID: PMC231953  PMID: 7529873

Abstract

Butyrate and its analogs have been shown to induce fetal hemoglobin in humans and primates and in erythroid cell cultures. To obtain insights concerning the cellular mechanisms of butyrate action, we analyzed the effects of butyrate on human globin gene expression in hybrids produced by fusing mouse erythroleukemia cells (MEL) with human fetal erythroid cells (HFE). These hybrids initially express human fetal hemoglobin but subsequently switch to adult globin expression after several weeks in culture. We found that alpha-aminobutyric acid, a butyrate analog which does not induce terminal maturation, strikingly delays the rate of the gamma- to beta-globin gene (gamma-to-beta) switch in the HFE x MEL hybrids. The effect of butyrate on globin expression is transient, with the result that the delay of globin gene switching requires the continuous presence of this compound in culture. Furthermore, butyrate fails to induce fetal hemoglobin expression in hybrids which have switched, suggesting that the effect of this compound on gamma-globin expression is due to inhibition of gamma gene silencing rather than to induction of gamma gene transcription. Since in other cellular systems, glucocorticoids antagonize the action of butyrate, the effect of dexamethasone on the gamma-to-beta switch in HFE x MEL hybrids was examined. Dexamethasone strikingly accelerated the gamma-to-beta switch, and its effect was irreversible. The effects of dexamethasone and butyrate on the gamma-to-beta switch of the HFE x MEL hybrids appear to be codominant. These results indicate that steroids can have a direct effect on globin gene switching in erythroid cells.

Full Text

The Full Text of this article is available as a PDF (247.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baron M. H., Maniatis T. Rapid reprogramming of globin gene expression in transient heterokaryons. Cell. 1986 Aug 15;46(4):591–602. doi: 10.1016/0092-8674(86)90885-8. [DOI] [PubMed] [Google Scholar]
  2. Birren B. W., Herschman H. R. Regulation of the rat metallothionein-I gene by sodium butyrate. Nucleic Acids Res. 1986 Jan 24;14(2):853–867. doi: 10.1093/nar/14.2.853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bohan C. A., Robinson R. A., Luciw P. A., Srinivasan A. Mutational analysis of sodium butyrate inducible elements in the human immunodeficiency virus type I long terminal repeat. Virology. 1989 Oct;172(2):573–583. doi: 10.1016/0042-6822(89)90200-6. [DOI] [PubMed] [Google Scholar]
  4. Bresnick E. H., John S., Berard D. S., LeFebvre P., Hager G. L. Glucocorticoid receptor-dependent disruption of a specific nucleosome on the mouse mammary tumor virus promoter is prevented by sodium butyrate. Proc Natl Acad Sci U S A. 1990 May;87(10):3977–3981. doi: 10.1073/pnas.87.10.3977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Burns L. J., Glauber J. G., Ginder G. D. Butyrate induces selective transcriptional activation of a hypomethylated embryonic globin gene in adult erythroid cells. Blood. 1988 Nov;72(5):1536–1542. [PubMed] [Google Scholar]
  6. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  7. Constantoulakis P., Knitter G., Stamatoyannopoulos G. On the induction of fetal hemoglobin by butyrates: in vivo and in vitro studies with sodium butyrate and comparison of combination treatments with 5-AzaC and AraC. Blood. 1989 Nov 1;74(6):1963–1971. [PubMed] [Google Scholar]
  8. Constantoulakis P., Papayannopoulou T., Stamatoyannopoulos G. alpha-Amino-N-butyric acid stimulates fetal hemoglobin in the adult. Blood. 1988 Dec;72(6):1961–1967. [PubMed] [Google Scholar]
  9. Deisseroth A., Hendrick D. Human alpha-globin gene expression following chromosomal dependent gene transfer into mouse erythroleukemia cells. Cell. 1978 Sep;15(1):55–63. doi: 10.1016/0092-8674(78)90082-x. [DOI] [PubMed] [Google Scholar]
  10. Enver T., Ebens A. J., Forrester W. C., Stamatoyannopoulos G. The human beta-globin locus activation region alters the developmental fate of a human fetal globin gene in transgenic mice. Proc Natl Acad Sci U S A. 1989 Sep;86(18):7033–7037. doi: 10.1073/pnas.86.18.7033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Frégeau C. J., Helgason C. D., Bleackley R. C. Two cytotoxic cell proteinase genes are differentially sensitive to sodium butyrate. Nucleic Acids Res. 1992 Jun 25;20(12):3113–3119. doi: 10.1093/nar/20.12.3113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gill R. K., Christakos S. Identification of sequence elements in mouse calbindin-D28k gene that confer 1,25-dihydroxyvitamin D3- and butyrate-inducible responses. Proc Natl Acad Sci U S A. 1993 Apr 1;90(7):2984–2988. doi: 10.1073/pnas.90.7.2984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Glauber J. G., Wandersee N. J., Little J. A., Ginder G. D. 5'-flanking sequences mediate butyrate stimulation of embryonic globin gene expression in adult erythroid cells. Mol Cell Biol. 1991 Sep;11(9):4690–4697. doi: 10.1128/mcb.11.9.4690. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kruh J. Effects of sodium butyrate, a new pharmacological agent, on cells in culture. Mol Cell Biochem. 1982 Feb 5;42(2):65–82. doi: 10.1007/BF00222695. [DOI] [PubMed] [Google Scholar]
  15. Leder A., Leder P. Butyric acid, a potent inducer of erythroid differentiation in cultured erythroleukemic cells. Cell. 1975 Jul;5(3):319–322. doi: 10.1016/0092-8674(75)90107-5. [DOI] [PubMed] [Google Scholar]
  16. McKnight G. S., Hager L., Palmiter R. D. Butyrate and related inhibitors of histone deacetylation block the induction of egg white genes by steroid hormones. Cell. 1980 Nov;22(2 Pt 2):469–477. doi: 10.1016/0092-8674(80)90357-8. [DOI] [PubMed] [Google Scholar]
  17. Melton D. A., Krieg P. A., Rebagliati M. R., Maniatis T., Zinn K., Green M. R. Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter. Nucleic Acids Res. 1984 Sep 25;12(18):7035–7056. doi: 10.1093/nar/12.18.7035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Pace B., Li Q., Peterson K., Stamatoyannopoulos G. alpha-Amino butyric acid cannot reactivate the silenced gamma gene of the beta locus YAC transgenic mouse. Blood. 1994 Dec 15;84(12):4344–4353. [PubMed] [Google Scholar]
  19. Papayannopoulou T., Brice M., Stamatoyannopoulos G. Analysis of human hemoglobin switching in MEL x human fetal erythroid cell hybrids. Cell. 1986 Aug 1;46(3):469–476. doi: 10.1016/0092-8674(86)90667-7. [DOI] [PubMed] [Google Scholar]
  20. Papayannopoulou T., Enver T., Takegawa S., Anagnou N. P., Stamatoyannopoulos G. Activation of developmentally mutated human globin genes by cell fusion. Science. 1988 Nov 18;242(4881):1056–1058. doi: 10.1126/science.2461587. [DOI] [PubMed] [Google Scholar]
  21. Papayannopoulou T., Nakamoto B., Kurachi S., Nelson R. Analysis of the erythroid phenotype of HEL cells: clonal variation and the effect of inducers. Blood. 1987 Dec;70(6):1764–1772. [PubMed] [Google Scholar]
  22. Perrine S. P., Ginder G. D., Faller D. V., Dover G. H., Ikuta T., Witkowska H. E., Cai S. P., Vichinsky E. P., Olivieri N. F. A short-term trial of butyrate to stimulate fetal-globin-gene expression in the beta-globin disorders. N Engl J Med. 1993 Jan 14;328(2):81–86. doi: 10.1056/NEJM199301143280202. [DOI] [PubMed] [Google Scholar]
  23. Perrine S. P., Rudolph A., Faller D. V., Roman C., Cohen R. A., Chen S. J., Kan Y. W. Butyrate infusions in the ovine fetus delay the biologic clock for globin gene switching. Proc Natl Acad Sci U S A. 1988 Nov;85(22):8540–8542. doi: 10.1073/pnas.85.22.8540. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Plesko M. M., Hargrove J. L., Granner D. K., Chalkley R. Inhibition by sodium butyrate of enzyme induction by glucocorticoids and dibutyryl cyclic AMP. A role for the rapid form of histone acetylation. J Biol Chem. 1983 Nov 25;258(22):13738–13744. [PubMed] [Google Scholar]
  25. Riggs M. G., Whittaker R. G., Neumann J. R., Ingram V. M. n-Butyrate causes histone modification in HeLa and Friend erythroleukaemia cells. Nature. 1977 Aug 4;268(5619):462–464. doi: 10.1038/268462a0. [DOI] [PubMed] [Google Scholar]
  26. Streutker C., Drucker D. J. Rapid induction of parathyroid hormone-like peptide gene expression by sodium butyrate in a rat islet cell line. Mol Endocrinol. 1991 May;5(5):703–708. doi: 10.1210/mend-5-5-703. [DOI] [PubMed] [Google Scholar]
  27. Takegawa S., Brice M., Stamatoyannopoulos G., Papayannopoulou T. Only adult hemoglobin is produced in fetal nonerythroid x MEL cell hybrids. Blood. 1986 Dec;68(6):1384–1388. [PubMed] [Google Scholar]
  28. Tang D. C., Taylor M. W. Transcriptional activation of the adenine phosphoribosyltransferase promoter by an upstream butyrate-induced Moloney murine sarcoma virus enhancer-promoter element. J Virol. 1990 Jun;64(6):2907–2911. doi: 10.1128/jvi.64.6.2907-2911.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Thorne A. W., Kmiciek D., Mitchelson K., Sautiere P., Crane-Robinson C. Patterns of histone acetylation. Eur J Biochem. 1990 Nov 13;193(3):701–713. doi: 10.1111/j.1432-1033.1990.tb19390.x. [DOI] [PubMed] [Google Scholar]
  30. Tichonicky L., Santana-Calderon M. A., Defer N., Giesen E. M., Beck G., Kruh J. Selective inhibition by sodium butyrate of glucocorticoid-induced tyrosine aminotransferase synthesis in hepatoma tissue-cultured cells. Eur J Biochem. 1981 Dec;120(3):427–433. doi: 10.1111/j.1432-1033.1981.tb05720.x. [DOI] [PubMed] [Google Scholar]
  31. Weingarten D., de Vellis J. Selective inhibition by sodium butyrate of the glucocorticoid induction of glycerol phosphate dehydrogenase in glial cultures. Biochem Biophys Res Commun. 1980 Apr 29;93(4):1297–1304. doi: 10.1016/0006-291x(80)90631-2. [DOI] [PubMed] [Google Scholar]
  32. Willing M. C., Nienhuis A. W., Anderson W. F. Selective activation of human beta-but not gamma-globin gene in human fibroblast x mouse erythroleukaemia cell hybrids. Nature. 1979 Feb 15;277(5697):534–538. doi: 10.1038/277534a0. [DOI] [PubMed] [Google Scholar]
  33. Wintour E. M., Smith M. B., Bell R. J., McDougall J. G., Cauchi M. N. The role of fetal adrenal hormones in the switch from fetal to adult globin synthesis in the sheep. J Endocrinol. 1985 Jan;104(1):165–170. doi: 10.1677/joe.0.1040165. [DOI] [PubMed] [Google Scholar]
  34. Zitnik G., Li Q., Stamatoyannopoulos G., Papayannopoulou T. Serum factors can modulate the developmental clock of gamma- to beta-globin gene switching in somatic cell hybrids. Mol Cell Biol. 1993 Aug;13(8):4844–4851. doi: 10.1128/mcb.13.8.4844. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES