Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1995 Feb;15(2):892–903. doi: 10.1128/mcb.15.2.892

Identification and characterization of a neuroretina-specific enhancer element in the quail Pax-6 (Pax-QNR) gene.

S Plaza 1, C Dozier 1, M C Langlois 1, S Saule 1
PMCID: PMC231973  PMID: 7529875

Abstract

Using nuclear run-on assays, we showed that the tissue-specific expression of quail Pax-6 (Pax-QNR) P0-initiated mRNAs is due in part to regulation of the gene at the transcriptional level. Regulatory sequences governing neuroretina-specific expression of the P0-initiated mRNAs were investigated. By using reporter-based expression assays, we characterized a region within the Pax-QNR gene, located 7.5 kbp downstream from the P0 promoter, that functions as an enhancer in neuroretina cells but not in nonexpressing P0-initiated mRNA cells (quail embryo cells and quail retinal pigment epithelial cells). This enhancer element functioned in a position- and orientation-independent manner both on the Pax-QNR P0 promoter and the heterologous thymidine kinase promoter. Moreover, this enhancer element exhibited a developmental stage-specific activity during embryonic neuroretina development: in contrast to activity at day E7, the enhancer activity was very weak at day E5. This paralleled the level of expression of P0-initiated mRNAs observed at the same stages. Using footprinting, gel retardation, and Southwestern (DNA-protein) analysis, we demonstrated the existence of four neuroretina-specific nuclear protein-binding sites, involving multiple unknown factors. In addition we showed that the quail enhancer element is structurally and functionally conserved in mice. All of these results strongly suggest that this enhancer element may contribute to the neuroretina-specific transcriptional regulation of the Pax-6 gene in vivo.

Full Text

The Full Text of this article is available as a PDF (594.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams B., Dörfler P., Aguzzi A., Kozmik Z., Urbánek P., Maurer-Fogy I., Busslinger M. Pax-5 encodes the transcription factor BSAP and is expressed in B lymphocytes, the developing CNS, and adult testis. Genes Dev. 1992 Sep;6(9):1589–1607. doi: 10.1101/gad.6.9.1589. [DOI] [PubMed] [Google Scholar]
  2. Babiss L. E., Friedman J. M. Regulation of N-myc gene expression: use of an adenovirus vector to demonstrate posttranscriptional control. Mol Cell Biol. 1990 Dec;10(12):6700–6708. doi: 10.1128/mcb.10.12.6700. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Beebe D. C. Homeobox genes and vertebrate eye development. Invest Ophthalmol Vis Sci. 1994 Jun;35(7):2897–2900. [PubMed] [Google Scholar]
  4. Berry M., Grosveld F., Dillon N. A single point mutation is the cause of the Greek form of hereditary persistence of fetal haemoglobin. Nature. 1992 Aug 6;358(6386):499–502. doi: 10.1038/358499a0. [DOI] [PubMed] [Google Scholar]
  5. Boshart M., Klüppel M., Schmidt A., Schütz G., Luckow B. Reporter constructs with low background activity utilizing the cat gene. Gene. 1992 Jan 2;110(1):129–130. doi: 10.1016/0378-1119(92)90456-y. [DOI] [PubMed] [Google Scholar]
  6. Carriere C., Plaza S., Martin P., Quatannens B., Bailly M., Stehelin D., Saule S. Characterization of quail Pax-6 (Pax-QNR) proteins expressed in the neuroretina. Mol Cell Biol. 1993 Dec;13(12):7257–7266. doi: 10.1128/mcb.13.12.7257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chalepakis G., Fritsch R., Fickenscher H., Deutsch U., Goulding M., Gruss P. The molecular basis of the undulated/Pax-1 mutation. Cell. 1991 Sep 6;66(5):873–884. doi: 10.1016/0092-8674(91)90434-z. [DOI] [PubMed] [Google Scholar]
  8. Chalepakis G., Stoykova A., Wijnholds J., Tremblay P., Gruss P. Pax: gene regulators in the developing nervous system. J Neurobiol. 1993 Oct;24(10):1367–1384. doi: 10.1002/neu.480241009. [DOI] [PubMed] [Google Scholar]
  9. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  10. Coulombre J. L., Coulombre A. J. Regeneration of neural retina from the pigmented epithelium in the chick embryo. Dev Biol. 1965 Aug;12(1):79–92. doi: 10.1016/0012-1606(65)90022-9. [DOI] [PubMed] [Google Scholar]
  11. Crepieux P., Leprince D., Flourens A., Albagli O., Ferreira E., Stéhelin D. The two functionally distinct amino termini of chicken c-ets-1 products arise from alternative promoter usage. Gene Expr. 1993;3(2):215–225. [PMC free article] [PubMed] [Google Scholar]
  12. Dozier C., Ansieau S., Ferreira E., Coll J., Stehelin D. An alternatively spliced c-mil/raf mRNA is predominantly expressed in chicken muscular tissues and conserved among vertebrate species. Oncogene. 1991 Aug;6(8):1307–1311. [PubMed] [Google Scholar]
  13. Dozier C., Carrière C., Grévin D., Martin P., Quatannens B., Stéhelin D., Saule S. Structure and DNA-binding properties of Pax-QNR, a paired box- and homeobox-containing gene. Cell Growth Differ. 1993 Apr;4(4):281–289. [PubMed] [Google Scholar]
  14. Eguchi G., Kodama R. Transdifferentiation. Curr Opin Cell Biol. 1993 Dec;5(6):1023–1028. doi: 10.1016/0955-0674(93)90087-7. [DOI] [PubMed] [Google Scholar]
  15. Fickenscher H. R., Chalepakis G., Gruss P. Murine Pax-2 protein is a sequence-specific trans-activator with expression in the genital system. DNA Cell Biol. 1993 Jun;12(5):381–391. doi: 10.1089/dna.1993.12.381. [DOI] [PubMed] [Google Scholar]
  16. Glaser T., Jepeal L., Edwards J. G., Young S. R., Favor J., Maas R. L. PAX6 gene dosage effect in a family with congenital cataracts, aniridia, anophthalmia and central nervous system defects. Nat Genet. 1994 Aug;7(4):463–471. doi: 10.1038/ng0894-463. [DOI] [PubMed] [Google Scholar]
  17. Glaser T., Walton D. S., Maas R. L. Genomic structure, evolutionary conservation and aniridia mutations in the human PAX6 gene. Nat Genet. 1992 Nov;2(3):232–239. doi: 10.1038/ng1192-232. [DOI] [PubMed] [Google Scholar]
  18. Gorman C. M., Moffat L. F., Howard B. H. Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Mol Cell Biol. 1982 Sep;2(9):1044–1051. doi: 10.1128/mcb.2.9.1044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hambor J. E., Mennone J., Coon M. E., Hanke J. H., Kavathas P. Identification and characterization of an Alu-containing, T-cell-specific enhancer located in the last intron of the human CD8 alpha gene. Mol Cell Biol. 1993 Nov;13(11):7056–7070. doi: 10.1128/mcb.13.11.7056. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hill R. E., Favor J., Hogan B. L., Ton C. C., Saunders G. F., Hanson I. M., Prosser J., Jordan T., Hastie N. D., van Heyningen V. Mouse small eye results from mutations in a paired-like homeobox-containing gene. Nature. 1991 Dec 19;354(6354):522–525. doi: 10.1038/354522a0. [DOI] [PubMed] [Google Scholar]
  21. Jacquemin P., Oury C., Peers B., Morin A., Belayew A., Martial J. A. Characterization of a single strong tissue-specific enhancer downstream from the three human genes encoding placental lactogen. Mol Cell Biol. 1994 Jan;14(1):93–103. doi: 10.1128/mcb.14.1.93. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lavery D. J., Schibler U. Circadian transcription of the cholesterol 7 alpha hydroxylase gene may involve the liver-enriched bZIP protein DBP. Genes Dev. 1993 Oct;7(10):1871–1884. doi: 10.1101/gad.7.10.1871. [DOI] [PubMed] [Google Scholar]
  23. Leprince D., Crepieux P., Stehelin D. c-ets-1 DNA binding to the PEA3 motif is differentially inhibited by all the mutations found in v-ets. Oncogene. 1992 Jan;7(1):9–17. [PubMed] [Google Scholar]
  24. Li H. S., Yang J. M., Jacobson R. D., Pasko D., Sundin O. Pax-6 is first expressed in a region of ectoderm anterior to the early neural plate: implications for stepwise determination of the lens. Dev Biol. 1994 Mar;162(1):181–194. doi: 10.1006/dbio.1994.1077. [DOI] [PubMed] [Google Scholar]
  25. Liu I. S., Chen J. D., Ploder L., Vidgen D., van der Kooy D., Kalnins V. I., McInnes R. R. Developmental expression of a novel murine homeobox gene (Chx10): evidence for roles in determination of the neuroretina and inner nuclear layer. Neuron. 1994 Aug;13(2):377–393. doi: 10.1016/0896-6273(94)90354-9. [DOI] [PubMed] [Google Scholar]
  26. Martin P., Carriere C., Dozier C., Quatannens B., Mirabel M. A., Vandenbunder B., Stehelin D., Saule S. Characterization of a paired box- and homeobox-containing quail gene (Pax-QNR) expressed in the neuroretina. Oncogene. 1992 Sep;7(9):1721–1728. [PubMed] [Google Scholar]
  27. O'Prey J., Ramsay S., Chambers I., Harrison P. R. Transcriptional up-regulation of the mouse cytosolic glutathione peroxidase gene in erythroid cells is due to a tissue-specific 3' enhancer containing functionally important CACC/GT motifs and binding sites for GATA and Ets transcription factors. Mol Cell Biol. 1993 Oct;13(10):6290–6303. doi: 10.1128/mcb.13.10.6290. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Pittack C., Jones M., Reh T. A. Basic fibroblast growth factor induces retinal pigment epithelium to generate neural retina in vitro. Development. 1991 Oct;113(2):577–588. doi: 10.1242/dev.113.2.577. [DOI] [PubMed] [Google Scholar]
  29. Plaza S., Dozier C., Saule S. Quail Pax-6 (Pax-QNR) encodes a transcription factor able to bind and trans-activate its own promoter. Cell Growth Differ. 1993 Dec;4(12):1041–1050. [PubMed] [Google Scholar]
  30. Quiring R., Walldorf U., Kloter U., Gehring W. J. Homology of the eyeless gene of Drosophila to the Small eye gene in mice and Aniridia in humans. Science. 1994 Aug 5;265(5173):785–789. doi: 10.1126/science.7914031. [DOI] [PubMed] [Google Scholar]
  31. Schibler U., Hagenbüchle O., Wellauer P. K., Pittet A. C. Two promoters of different strengths control the transcription of the mouse alpha-amylase gene Amy-1a in the parotid gland and the liver. Cell. 1983 Jun;33(2):501–508. doi: 10.1016/0092-8674(83)90431-2. [DOI] [PubMed] [Google Scholar]
  32. Spegelaere P., van Hille B., Spruyt N., Faisst S., Cornelis J. J., Rommelaere J. Initiation of transcription from the minute virus of mice P4 promoter is stimulated in rat cells expressing a c-Ha-ras oncogene. J Virol. 1991 Sep;65(9):4919–4928. doi: 10.1128/jvi.65.9.4919-4928.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Stapleton P., Weith A., Urbánek P., Kozmik Z., Busslinger M. Chromosomal localization of seven PAX genes and cloning of a novel family member, PAX-9. Nat Genet. 1993 Apr;3(4):292–298. doi: 10.1038/ng0493-292. [DOI] [PubMed] [Google Scholar]
  34. Stein B., Rahmsdorf H. J., Steffen A., Litfin M., Herrlich P. UV-induced DNA damage is an intermediate step in UV-induced expression of human immunodeficiency virus type 1, collagenase, c-fos, and metallothionein. Mol Cell Biol. 1989 Nov;9(11):5169–5181. doi: 10.1128/mcb.9.11.5169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Strachan T., Read A. P. PAX genes. Curr Opin Genet Dev. 1994 Jun;4(3):427–438. doi: 10.1016/0959-437x(94)90032-9. [DOI] [PubMed] [Google Scholar]
  36. Tjian R., Maniatis T. Transcriptional activation: a complex puzzle with few easy pieces. Cell. 1994 Apr 8;77(1):5–8. doi: 10.1016/0092-8674(94)90227-5. [DOI] [PubMed] [Google Scholar]
  37. Ton C. C., Hirvonen H., Miwa H., Weil M. M., Monaghan P., Jordan T., van Heyningen V., Hastie N. D., Meijers-Heijboer H., Drechsler M. Positional cloning and characterization of a paired box- and homeobox-containing gene from the aniridia region. Cell. 1991 Dec 20;67(6):1059–1074. doi: 10.1016/0092-8674(91)90284-6. [DOI] [PubMed] [Google Scholar]
  38. Tremblay P., Gruss P. Pax: genes for mice and men. Pharmacol Ther. 1994;61(1-2):205–226. doi: 10.1016/0163-7258(94)90063-9. [DOI] [PubMed] [Google Scholar]
  39. Turque N., Plaza S., Radvanyi F., Carriere C., Saule S. Pax-QNR/Pax-6, a paired box- and homeobox-containing gene expressed in neurons, is also expressed in pancreatic endocrine cells. Mol Endocrinol. 1994 Jul;8(7):929–938. doi: 10.1210/mend.8.7.7984154. [DOI] [PubMed] [Google Scholar]
  40. Walther C., Gruss P. Pax-6, a murine paired box gene, is expressed in the developing CNS. Development. 1991 Dec;113(4):1435–1449. doi: 10.1242/dev.113.4.1435. [DOI] [PubMed] [Google Scholar]
  41. Walther C., Guenet J. L., Simon D., Deutsch U., Jostes B., Goulding M. D., Plachov D., Balling R., Gruss P. Pax: a murine multigene family of paired box-containing genes. Genomics. 1991 Oct;11(2):424–434. doi: 10.1016/0888-7543(91)90151-4. [DOI] [PubMed] [Google Scholar]
  42. Wefald F. C., Devlin B. H., Williams R. S. Functional heterogeneity of mammalian TATA-box sequences revealed by interaction with a cell-specific enhancer. Nature. 1990 Mar 15;344(6263):260–262. doi: 10.1038/344260a0. [DOI] [PubMed] [Google Scholar]
  43. Zannini M., Francis-Lang H., Plachov D., Di Lauro R. Pax-8, a paired domain-containing protein, binds to a sequence overlapping the recognition site of a homeodomain and activates transcription from two thyroid-specific promoters. Mol Cell Biol. 1992 Sep;12(9):4230–4241. doi: 10.1128/mcb.12.9.4230. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES