Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1995 Jan;15(1):505–516. doi: 10.1128/mcb.15.1.505

Modulation of cellular thermoresistance and actin filament stability accompanies phosphorylation-induced changes in the oligomeric structure of heat shock protein 27.

J N Lavoie 1, H Lambert 1, E Hickey 1, L A Weber 1, J Landry 1
PMCID: PMC232001  PMID: 7799959

Abstract

Phosphorylation of heat shock protein 27 (HSP27) can modulate actin filament dynamics in response to growth factors. During heat shock, HSP27 is phosphorylated at the same sites and by the same protein kinase as during mitogenic stimulation. This suggests that the same function of the protein may be activated during growth factor stimulation and the stress response. To determine the role of HSP27 phosphorylation in the heat shock response, several stable Chinese hamster cell lines that constitutively express various levels of the wild-type HSP27 (HU27 cells) or a nonphosphorylatable form of human HSP27 (HU27pm3 cells) were developed. In contrast to HU27 cells, which showed increased survival after heat shock, HU27pm3 cells showed only slightly enhanced survival. Evidence is presented that stabilization of microfilaments is a major target of the protective function of HSP27. In the HU27pm3 cells, the microfilaments were thermosensitized compared with those in the control cells, whereas wild-type HSP27 caused an increased stability of these structures in HU27 cells. HU27 but not HU27pm3 cells were highly resistant to cytochalasin D treatment compared with control cells. Moreover, in cells treated with cytochalasin D, wild-type HSP27 but not the phosphorylated form of HSP27 accelerated the reappearance of actin filaments. The mutations in human HSP27 had no effect on heat shock-induced change in solubility and cellular localization of the protein, indicating that phosphorylation was not involved in these processes. However, induction of HSP27 phosphorylation by stressing agents or mitogens caused a reduction in the multimeric size of the wild-type protein, an effect which was not observed with the mutant protein. We propose that early during stress, phosphorylation-induced conformational changes in the HSP27 oligomers regulate the activity of the protein at the level of microfilament dynamics, resulting in both enhanced stability and accelerated recovery of the filaments. The level of protection provided by HSP27 during heat shock may thus represent the contribution of better maintenance of actin filament integrity to overall cell survival.

Full Text

The Full Text of this article is available as a PDF (1.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aderem A. Signal transduction and the actin cytoskeleton: the roles of MARCKS and profilin. Trends Biochem Sci. 1992 Oct;17(10):438–443. doi: 10.1016/0968-0004(92)90016-3. [DOI] [PubMed] [Google Scholar]
  2. Arpin M., Algrain M., Louvard D. Membrane-actin microfilament connections: an increasing diversity of players related to band 4.1. Curr Opin Cell Biol. 1994 Feb;6(1):136–141. doi: 10.1016/0955-0674(94)90127-9. [DOI] [PubMed] [Google Scholar]
  3. Arrigo A. P. Cellular localization of HSP23 during Drosophila development and following subsequent heat shock. Dev Biol. 1987 Jul;122(1):39–48. doi: 10.1016/0012-1606(87)90330-7. [DOI] [PubMed] [Google Scholar]
  4. Arrigo A. P., Suhan J. P., Welch W. J. Dynamic changes in the structure and intracellular locale of the mammalian low-molecular-weight heat shock protein. Mol Cell Biol. 1988 Dec;8(12):5059–5071. doi: 10.1128/mcb.8.12.5059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Arrigo A. P., Welch W. J. Characterization and purification of the small 28,000-dalton mammalian heat shock protein. J Biol Chem. 1987 Nov 15;262(32):15359–15369. [PubMed] [Google Scholar]
  6. Augusteyn R. C., Koretz J. F. A possible structure for alpha-crystallin. FEBS Lett. 1987 Sep 28;222(1):1–5. doi: 10.1016/0014-5793(87)80180-1. [DOI] [PubMed] [Google Scholar]
  7. Behlke J., Lutsch G., Gaestel M., Bielka H. Supramolecular structure of the recombinant murine small heat shock protein hsp25. FEBS Lett. 1991 Aug 19;288(1-2):119–122. doi: 10.1016/0014-5793(91)81016-2. [DOI] [PubMed] [Google Scholar]
  8. Benndorf R., Hayess K., Ryazantsev S., Wieske M., Behlke J., Lutsch G. Phosphorylation and supramolecular organization of murine small heat shock protein HSP25 abolish its actin polymerization-inhibiting activity. J Biol Chem. 1994 Aug 12;269(32):20780–20784. [PubMed] [Google Scholar]
  9. Bentley N. J., Fitch I. T., Tuite M. F. The small heat-shock protein Hsp26 of Saccharomyces cerevisiae assembles into a high molecular weight aggregate. Yeast. 1992 Feb;8(2):95–106. doi: 10.1002/yea.320080204. [DOI] [PubMed] [Google Scholar]
  10. Chambard J. C., Franchi A., Le Cam A., Pouysségur J. Growth factor-stimulated protein phosphorylation in G0/G1-arrested fibroblasts. Two distinct classes of growth factors with potentiating effects. J Biol Chem. 1983 Feb 10;258(3):1706–1713. [PubMed] [Google Scholar]
  11. Clos J., Westwood J. T., Becker P. B., Wilson S., Lambert K., Wu C. Molecular cloning and expression of a hexameric Drosophila heat shock factor subject to negative regulation. Cell. 1990 Nov 30;63(5):1085–1097. doi: 10.1016/0092-8674(90)90511-c. [DOI] [PubMed] [Google Scholar]
  12. Dubois M. F., Hovanessian A. G., Bensaude O. Heat-shock-induced denaturation of proteins. Characterization of the insolubilization of the interferon-induced p68 kinase. J Biol Chem. 1991 May 25;266(15):9707–9711. [PubMed] [Google Scholar]
  13. Gabai V. L., Kabakov A. E. Tumor cell resistance to energy deprivation and hyperthermia can be determined by the actin skeleton stability. Cancer Lett. 1993 Jun 15;70(1-2):25–31. doi: 10.1016/0304-3835(93)90070-p. [DOI] [PubMed] [Google Scholar]
  14. Gaestel M., Schröder W., Benndorf R., Lippmann C., Buchner K., Hucho F., Erdmann V. A., Bielka H. Identification of the phosphorylation sites of the murine small heat shock protein hsp25. J Biol Chem. 1991 Aug 5;266(22):14721–14724. [PubMed] [Google Scholar]
  15. Glass J. R., DeWitt R. G., Cress A. E. Rapid loss of stress fibers in Chinese hamster ovary cells after hyperthermia. Cancer Res. 1985 Jan;45(1):258–262. [PubMed] [Google Scholar]
  16. Gorman C., Padmanabhan R., Howard B. H. High efficiency DNA-mediated transformation of primate cells. Science. 1983 Aug 5;221(4610):551–553. doi: 10.1126/science.6306768. [DOI] [PubMed] [Google Scholar]
  17. Hickey E., Brandon S. E., Potter R., Stein G., Stein J., Weber L. A. Sequence and organization of genes encoding the human 27 kDa heat shock protein. Nucleic Acids Res. 1986 May 27;14(10):4127–4145. doi: 10.1093/nar/14.10.4127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Iida K., Iida H., Yahara I. Heat shock induction of intranuclear actin rods in cultured mammalian cells. Exp Cell Res. 1986 Jul;165(1):207–215. doi: 10.1016/0014-4827(86)90545-8. [DOI] [PubMed] [Google Scholar]
  19. Iwaki T., Iwaki A., Tateishi J., Goldman J. E. Sense and antisense modification of glial alpha B-crystallin production results in alterations of stress fiber formation and thermoresistance. J Cell Biol. 1994 Jun;125(6):1385–1393. doi: 10.1083/jcb.125.6.1385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Jakob U., Gaestel M., Engel K., Buchner J. Small heat shock proteins are molecular chaperones. J Biol Chem. 1993 Jan 25;268(3):1517–1520. [PubMed] [Google Scholar]
  21. Kampinga H. H., Luppes J. G., Konings A. W. Heat-induced nuclear protein binding and its relation to thermal cytotoxicity. Int J Hyperthermia. 1987 Sep-Oct;3(5):459–465. doi: 10.3109/02656738709140416. [DOI] [PubMed] [Google Scholar]
  22. Kampinga H. H. Thermotolerance in mammalian cells. Protein denaturation and aggregation, and stress proteins. J Cell Sci. 1993 Jan;104(Pt 1):11–17. doi: 10.1242/jcs.104.1.11. [DOI] [PubMed] [Google Scholar]
  23. Kato K., Hasegawa K., Goto S., Inaguma Y. Dissociation as a result of phosphorylation of an aggregated form of the small stress protein, hsp27. J Biol Chem. 1994 Apr 15;269(15):11274–11278. [PubMed] [Google Scholar]
  24. Knauf U., Jakob U., Engel K., Buchner J., Gaestel M. Stress- and mitogen-induced phosphorylation of the small heat shock protein Hsp25 by MAPKAP kinase 2 is not essential for chaperone properties and cellular thermoresistance. EMBO J. 1994 Jan 1;13(1):54–60. doi: 10.1002/j.1460-2075.1994.tb06234.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kolega J., Janson L. W., Taylor D. L. The role of solation-contraction coupling in regulating stress fiber dynamics in nonmuscle cells. J Cell Biol. 1991 Sep;114(5):993–1003. doi: 10.1083/jcb.114.5.993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Landry J., Bernier D., Chrétien P., Nicole L. M., Tanguay R. M., Marceau N. Synthesis and degradation of heat shock proteins during development and decay of thermotolerance. Cancer Res. 1982 Jun;42(6):2457–2461. [PubMed] [Google Scholar]
  27. Landry J., Chrétien P., Lambert H., Hickey E., Weber L. A. Heat shock resistance conferred by expression of the human HSP27 gene in rodent cells. J Cell Biol. 1989 Jul;109(1):7–15. doi: 10.1083/jcb.109.1.7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Landry J., Chrétien P., Laszlo A., Lambert H. Phosphorylation of HSP27 during development and decay of thermotolerance in Chinese hamster cells. J Cell Physiol. 1991 Apr;147(1):93–101. doi: 10.1002/jcp.1041470113. [DOI] [PubMed] [Google Scholar]
  29. Landry J., Lambert H., Zhou M., Lavoie J. N., Hickey E., Weber L. A., Anderson C. W. Human HSP27 is phosphorylated at serines 78 and 82 by heat shock and mitogen-activated kinases that recognize the same amino acid motif as S6 kinase II. J Biol Chem. 1992 Jan 15;267(2):794–803. [PubMed] [Google Scholar]
  30. Laszlo A. The effects of hyperthermia on mammalian cell structure and function. Cell Prolif. 1992 Mar;25(2):59–87. doi: 10.1111/j.1365-2184.1992.tb01482.x. [DOI] [PubMed] [Google Scholar]
  31. Laszlo A., Wright W., Roti Roti J. L. Initial characterization of heat-induced excess nuclear proteins in HeLa cells. J Cell Physiol. 1992 Jun;151(3):519–532. doi: 10.1002/jcp.1041510311. [DOI] [PubMed] [Google Scholar]
  32. Lavoie J. N., Gingras-Breton G., Tanguay R. M., Landry J. Induction of Chinese hamster HSP27 gene expression in mouse cells confers resistance to heat shock. HSP27 stabilization of the microfilament organization. J Biol Chem. 1993 Feb 15;268(5):3420–3429. [PubMed] [Google Scholar]
  33. Lavoie J. N., Hickey E., Weber L. A., Landry J. Modulation of actin microfilament dynamics and fluid phase pinocytosis by phosphorylation of heat shock protein 27. J Biol Chem. 1993 Nov 15;268(32):24210–24214. [PubMed] [Google Scholar]
  34. Lavoie J., Chrétien P., Landry J. Sequence of the Chinese hamster small heat shock protein HSP27. Nucleic Acids Res. 1990 Mar 25;18(6):1637–1637. doi: 10.1093/nar/18.6.1637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Li G. C., Werb Z. Correlation between synthesis of heat shock proteins and development of thermotolerance in Chinese hamster fibroblasts. Proc Natl Acad Sci U S A. 1982 May;79(10):3218–3222. doi: 10.1073/pnas.79.10.3218. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Mehlen P., Arrigo A. P. The serum-induced phosphorylation of mammalian hsp27 correlates with changes in its intracellular localization and levels of oligomerization. Eur J Biochem. 1994 Apr 1;221(1):327–334. doi: 10.1111/j.1432-1033.1994.tb18744.x. [DOI] [PubMed] [Google Scholar]
  37. Merck K. B., Groenen P. J., Voorter C. E., de Haard-Hoekman W. A., Horwitz J., Bloemendal H., de Jong W. W. Structural and functional similarities of bovine alpha-crystallin and mouse small heat-shock protein. A family of chaperones. J Biol Chem. 1993 Jan 15;268(2):1046–1052. [PubMed] [Google Scholar]
  38. Mirabelli F., Salis A., Marinoni V., Finardi G., Bellomo G., Thor H., Orrenius S. Menadione-induced bleb formation in hepatocytes is associated with the oxidation of thiol groups in actin. Arch Biochem Biophys. 1988 Jul;264(1):261–269. doi: 10.1016/0003-9861(88)90593-0. [DOI] [PubMed] [Google Scholar]
  39. Miron T., Vancompernolle K., Vandekerckhove J., Wilchek M., Geiger B. A 25-kD inhibitor of actin polymerization is a low molecular mass heat shock protein. J Cell Biol. 1991 Jul;114(2):255–261. doi: 10.1083/jcb.114.2.255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Miron T., Wilchek M., Geiger B. Characterization of an inhibitor of actin polymerization in vinculin-rich fraction of turkey gizzard smooth muscle. Eur J Biochem. 1988 Dec 15;178(2):543–553. doi: 10.1111/j.1432-1033.1988.tb14481.x. [DOI] [PubMed] [Google Scholar]
  41. Ohtsuka K., Tanabe K., Nakamura H., Sato C. Possible cytoskeletal association of 69,000- and 68,000-dalton heat shock proteins and structural relations among heat shock proteins in murine mastocytoma cells. Radiat Res. 1986 Oct;108(1):34–42. [PubMed] [Google Scholar]
  42. Pinto M., Morange M., Bensaude O. Denaturation of proteins during heat shock. In vivo recovery of solubility and activity of reporter enzymes. J Biol Chem. 1991 Jul 25;266(21):13941–13946. [PubMed] [Google Scholar]
  43. Sampath P., Pollard T. D. Effects of cytochalasin, phalloidin, and pH on the elongation of actin filaments. Biochemistry. 1991 Feb 19;30(7):1973–1980. doi: 10.1021/bi00221a034. [DOI] [PubMed] [Google Scholar]
  44. Siezen R. J., Bindels J. G., Hoenders H. J. The quaternary structure of bovine alpha-crystallin. Effects of variation in alkaline pH, ionic strength, temperature and calcium ion concentration. Eur J Biochem. 1980 Oct;111(2):435–444. doi: 10.1111/j.1432-1033.1980.tb04958.x. [DOI] [PubMed] [Google Scholar]
  45. Tanguay R. M., Wu Y., Khandjian E. W. Tissue-specific expression of heat shock proteins of the mouse in the absence of stress. Dev Genet. 1993;14(2):112–118. doi: 10.1002/dvg.1020140205. [DOI] [PubMed] [Google Scholar]
  46. Tardieu A., Laporte D., Licinio P., Krop B., Delaye M. Calf lens alpha-crystallin quaternary structure. A three-layer tetrahedral model. J Mol Biol. 1986 Dec 20;192(4):711–724. doi: 10.1016/0022-2836(86)90023-9. [DOI] [PubMed] [Google Scholar]
  47. Theriot J. A., Mitchison T. J. The three faces of profilin. Cell. 1993 Dec 3;75(5):835–838. doi: 10.1016/0092-8674(93)90527-w. [DOI] [PubMed] [Google Scholar]
  48. Walsh M. T., Sen A. C., Chakrabarti B. Micellar subunit assembly in a three-layer model of oligomeric alpha-crystallin. J Biol Chem. 1991 Oct 25;266(30):20079–20084. [PubMed] [Google Scholar]
  49. Warters R. L., Brizgys L. M., Sharma R., Roti Roti J. L. Heat shock (45 degrees C) results in an increase of nuclear matrix protein mass in HeLa cells. Int J Radiat Biol Relat Stud Phys Chem Med. 1986 Aug;50(2):253–268. doi: 10.1080/09553008614550641. [DOI] [PubMed] [Google Scholar]
  50. Weeds A., Maciver S. F-actin capping proteins. Curr Opin Cell Biol. 1993 Feb;5(1):63–69. doi: 10.1016/s0955-0674(05)80009-2. [DOI] [PubMed] [Google Scholar]
  51. Welch W. J., Suhan J. P. Morphological study of the mammalian stress response: characterization of changes in cytoplasmic organelles, cytoskeleton, and nucleoli, and appearance of intranuclear actin filaments in rat fibroblasts after heat-shock treatment. J Cell Biol. 1985 Oct;101(4):1198–1211. doi: 10.1083/jcb.101.4.1198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Zhou M., Lambert H., Landry J. Transient activation of a distinct serine protein kinase is responsible for 27-kDa heat shock protein phosphorylation in mitogen-stimulated and heat-shocked cells. J Biol Chem. 1993 Jan 5;268(1):35–43. [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES