Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1997 Apr;17(4):1947–1958. doi: 10.1128/mcb.17.4.1947

Megakaryocytic differentiation induced by constitutive activation of mitogen-activated protein kinase kinase.

A M Whalen 1, S C Galasinski 1, P S Shapiro 1, T S Nahreini 1, N G Ahn 1
PMCID: PMC232041  PMID: 9121442

Abstract

The K562 erythroleukemia cell line was used to study the molecular mechanisms regulating lineage commitment of hematopoietic stem cells. Phorbol esters, which initiate megakaryocyte differentiation in this cell line, caused a rapid increase in extracellular-signal-regulated kinase (ERK), which remained elevated for 2 h and returned to near-basal levels by 24 h. In the absence of extracellular stimuli, ERK could be activated by expression of constitutively active mutants of mitogen-activated protein (MAP) kinase kinase (MKK), resulting in cell adhesion and spreading, increased cell size, inhibition of cell growth, and induction of the platelet-specific integrin alphaIIb beta3, all hallmarks of megakaryocytic differentiation. In contrast, expression of wild-type MKK had little effect. In addition, constitutively active MKK suppressed the expression of an erythroid marker, alpha-globin, indicating the ability to suppress cellular responses necessary for alternative cell lineages. The MKK inhibitor PD98059 blocked MKK/ERK activation and cellular responses to phorbol ester, demonstrating that activation of MKK is necessary and sufficient to induce a differentiation program along the megakaryocyte lineage. Thus, the MAP kinase cascade, which promotes cell growth and proliferation in many cell types, instead inhibits cell proliferation and initiates lineage-specific differentiation in K562 cells, establishing a model system to investigate the mechanisms by which this signal transduction pathway specifies cell fate and developmental processes.

Full Text

The Full Text of this article is available as a PDF (2.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alberola-Ila J., Forbush K. A., Seger R., Krebs E. G., Perlmutter R. M. Selective requirement for MAP kinase activation in thymocyte differentiation. Nature. 1995 Feb 16;373(6515):620–623. doi: 10.1038/373620a0. [DOI] [PubMed] [Google Scholar]
  2. Alitalo R. Induced differentiation of K562 leukemia cells: a model for studies of gene expression in early megakaryoblasts. Leuk Res. 1990;14(6):501–514. doi: 10.1016/0145-2126(90)90002-q. [DOI] [PubMed] [Google Scholar]
  3. Bishop J. M. Molecular themes in oncogenesis. Cell. 1991 Jan 25;64(2):235–248. doi: 10.1016/0092-8674(91)90636-d. [DOI] [PubMed] [Google Scholar]
  4. Bittorf T., Jaster R., Brock J. Rapid activation of the MAP kinase pathway in hematopoietic cells by erythropoietin, granulocyte-macrophage colony-stimulating factor and interleukin-3. Cell Signal. 1994 Mar;6(3):305–311. doi: 10.1016/0898-6568(94)90035-3. [DOI] [PubMed] [Google Scholar]
  5. Brunet A., Pagès G., Pouysségur J. Constitutively active mutants of MAP kinase kinase (MEK1) induce growth factor-relaxation and oncogenicity when expressed in fibroblasts. Oncogene. 1994 Nov;9(11):3379–3387. [PubMed] [Google Scholar]
  6. Burger S. R., Zutter M. M., Sturgill-Koszycki S., Santoro S. A. Induced cell surface expression of functional alpha 2 beta 1 integrin during megakaryocytic differentiation of K562 leukemic cells. Exp Cell Res. 1992 Sep;202(1):28–35. doi: 10.1016/0014-4827(92)90400-3. [DOI] [PubMed] [Google Scholar]
  7. Charnay P., Maniatis T. Transcriptional regulation of globin gene expression in the human erythroid cell line K562. Science. 1983 Jun 17;220(4603):1281–1283. doi: 10.1126/science.6574602. [DOI] [PubMed] [Google Scholar]
  8. Chen R. H., Juo P. C., Curran T., Blenis J. Phosphorylation of c-Fos at the C-terminus enhances its transforming activity. Oncogene. 1996 Apr 4;12(7):1493–1502. [PubMed] [Google Scholar]
  9. Chomczynski P. A reagent for the single-step simultaneous isolation of RNA, DNA and proteins from cell and tissue samples. Biotechniques. 1993 Sep;15(3):532-4, 536-7. [PubMed] [Google Scholar]
  10. Cowley S., Paterson H., Kemp P., Marshall C. J. Activation of MAP kinase kinase is necessary and sufficient for PC12 differentiation and for transformation of NIH 3T3 cells. Cell. 1994 Jun 17;77(6):841–852. doi: 10.1016/0092-8674(94)90133-3. [DOI] [PubMed] [Google Scholar]
  11. Craddock C. F., Vyas P., Sharpe J. A., Ayyub H., Wood W. G., Higgs D. R. Contrasting effects of alpha and beta globin regulatory elements on chromatin structure may be related to their different chromosomal environments. EMBO J. 1995 Apr 18;14(8):1718–1726. doi: 10.1002/j.1460-2075.1995.tb07161.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Davis R. J. The mitogen-activated protein kinase signal transduction pathway. J Biol Chem. 1993 Jul 15;268(20):14553–14556. [PubMed] [Google Scholar]
  13. Delgado M. D., Lerga A., Cañelles M., Gómez-Casares M. T., León J. Differential regulation of Max and role of c-Myc during erythroid and myelomonocytic differentiation of K562 cells. Oncogene. 1995 Apr 20;10(8):1659–1665. [PubMed] [Google Scholar]
  14. Dudley D. T., Pang L., Decker S. J., Bridges A. J., Saltiel A. R. A synthetic inhibitor of the mitogen-activated protein kinase cascade. Proc Natl Acad Sci U S A. 1995 Aug 15;92(17):7686–7689. doi: 10.1073/pnas.92.17.7686. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Fong A. M., Santoro S. A. Transcriptional regulation of alpha IIb integrin gene expression during megakaryocytic differentiation of K562 cells. Role of a silencer element. J Biol Chem. 1994 Jul 15;269(28):18441–18447. [PubMed] [Google Scholar]
  16. Frost J. A., Geppert T. D., Cobb M. H., Feramisco J. R. A requirement for extracellular signal-regulated kinase (ERK) function in the activation of AP-1 by Ha-Ras, phorbol 12-myristate 13-acetate, and serum. Proc Natl Acad Sci U S A. 1994 Apr 26;91(9):3844–3848. doi: 10.1073/pnas.91.9.3844. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Gewirtz A. M. Megakaryocytopoiesis: the state of the art. Thromb Haemost. 1995 Jul;74(1):204–209. [PubMed] [Google Scholar]
  18. Kortenjann M., Thomae O., Shaw P. E. Inhibition of v-raf-dependent c-fos expression and transformation by a kinase-defective mutant of the mitogen-activated protein kinase Erk2. Mol Cell Biol. 1994 Jul;14(7):4815–4824. doi: 10.1128/mcb.14.7.4815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lenormand P., Sardet C., Pagès G., L'Allemain G., Brunet A., Pouysségur J. Growth factors induce nuclear translocation of MAP kinases (p42mapk and p44mapk) but not of their activator MAP kinase kinase (p45mapkk) in fibroblasts. J Cell Biol. 1993 Sep;122(5):1079–1088. doi: 10.1083/jcb.122.5.1079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lozzio C. B., Lozzio B. B. Human chronic myelogenous leukemia cell-line with positive Philadelphia chromosome. Blood. 1975 Mar;45(3):321–334. [PubMed] [Google Scholar]
  21. Lumelsky N. L., Forget B. G. Negative regulation of globin gene expression during megakaryocytic differentiation of a human erythroleukemic cell line. Mol Cell Biol. 1991 Jul;11(7):3528–3536. doi: 10.1128/mcb.11.7.3528. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Mansour S. J., Candia J. M., Gloor K. K., Ahn N. G. Constitutively active mitogen-activated protein kinase kinase 1 (MAPKK1) and MAPKK2 mediate similar transcriptional and morphological responses. Cell Growth Differ. 1996 Feb;7(2):243–250. [PubMed] [Google Scholar]
  23. Mansour S. J., Candia J. M., Matsuura J. E., Manning M. C., Ahn N. G. Interdependent domains controlling the enzymatic activity of mitogen-activated protein kinase kinase 1. Biochemistry. 1996 Dec 3;35(48):15529–15536. doi: 10.1021/bi961854s. [DOI] [PubMed] [Google Scholar]
  24. Mansour S. J., Matten W. T., Hermann A. S., Candia J. M., Rong S., Fukasawa K., Vande Woude G. F., Ahn N. G. Transformation of mammalian cells by constitutively active MAP kinase kinase. Science. 1994 Aug 12;265(5174):966–970. doi: 10.1126/science.8052857. [DOI] [PubMed] [Google Scholar]
  25. Marshall C. J. Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell. 1995 Jan 27;80(2):179–185. doi: 10.1016/0092-8674(95)90401-8. [DOI] [PubMed] [Google Scholar]
  26. Metcalf D. The molecular control of cell division, differentiation commitment and maturation in haemopoietic cells. Nature. 1989 May 4;339(6219):27–30. doi: 10.1038/339027a0. [DOI] [PubMed] [Google Scholar]
  27. Murate T., Kagami Y., Hotta T., Yoshida T., Saito H., Yoshida S. Terminal differentiation of human erythroleukemia cell line K562 induced by aphidicolin. Exp Cell Res. 1990 Nov;191(1):45–50. doi: 10.1016/0014-4827(90)90033-7. [DOI] [PubMed] [Google Scholar]
  28. Nel A. E., Hanekom C., Rheeder A., Williams K., Pollack S., Katz R., Landreth G. E. Stimulation of MAP-2 kinase activity in T lymphocytes by anti-CD3 or anti-Ti monoclonal antibody is partially dependent on protein kinase C. J Immunol. 1990 Apr 1;144(7):2683–2689. [PubMed] [Google Scholar]
  29. O'Neill E. M., Rebay I., Tjian R., Rubin G. M. The activities of two Ets-related transcription factors required for Drosophila eye development are modulated by the Ras/MAPK pathway. Cell. 1994 Jul 15;78(1):137–147. doi: 10.1016/0092-8674(94)90580-0. [DOI] [PubMed] [Google Scholar]
  30. Okazaki K., Sagata N. MAP kinase activation is essential for oncogenic transformation of NIH3T3 cells by Mos. Oncogene. 1995 Mar 16;10(6):1149–1157. [PubMed] [Google Scholar]
  31. Pagès G., Lenormand P., L'Allemain G., Chambard J. C., Meloche S., Pouysségur J. Mitogen-activated protein kinases p42mapk and p44mapk are required for fibroblast proliferation. Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8319–8323. doi: 10.1073/pnas.90.18.8319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Pang L., Sawada T., Decker S. J., Saltiel A. R. Inhibition of MAP kinase kinase blocks the differentiation of PC-12 cells induced by nerve growth factor. J Biol Chem. 1995 Jun 9;270(23):13585–13588. doi: 10.1074/jbc.270.23.13585. [DOI] [PubMed] [Google Scholar]
  33. Perkins G. R., Marshall C. J., Collins M. K. The role of MAP kinase kinase in interleukin-3 stimulation of proliferation. Blood. 1996 May 1;87(9):3669–3675. [PubMed] [Google Scholar]
  34. Perrimon N. Signalling pathways initiated by receptor protein tyrosine kinases in Drosophila. Curr Opin Cell Biol. 1994 Apr;6(2):260–266. doi: 10.1016/0955-0674(94)90145-7. [DOI] [PubMed] [Google Scholar]
  35. Posada J., Cooper J. A. Requirements for phosphorylation of MAP kinase during meiosis in Xenopus oocytes. Science. 1992 Jan 10;255(5041):212–215. doi: 10.1126/science.1313186. [DOI] [PubMed] [Google Scholar]
  36. Prandini M. H., Uzan G., Martin F., Thevenon D., Marguerie G. Characterization of a specific erythromegakaryocytic enhancer within the glycoprotein IIb promoter. J Biol Chem. 1992 May 25;267(15):10370–10374. [PubMed] [Google Scholar]
  37. Qui M. S., Green S. H. PC12 cell neuronal differentiation is associated with prolonged p21ras activity and consequent prolonged ERK activity. Neuron. 1992 Oct;9(4):705–717. doi: 10.1016/0896-6273(92)90033-a. [DOI] [PubMed] [Google Scholar]
  38. Robbins D. J., Zhen E., Owaki H., Vanderbilt C. A., Ebert D., Geppert T. D., Cobb M. H. Regulation and properties of extracellular signal-regulated protein kinases 1 and 2 in vitro. J Biol Chem. 1993 Mar 5;268(7):5097–5106. [PubMed] [Google Scholar]
  39. Rutherford T. R., Clegg J. B., Weatherall D. J. K562 human leukaemic cells synthesise embryonic haemoglobin in response to haemin. Nature. 1979 Jul 12;280(5718):164–165. doi: 10.1038/280164a0. [DOI] [PubMed] [Google Scholar]
  40. Rutherford T., Clegg J. B., Higgs D. R., Jones R. W., Thompson J., Weatherall D. J. Embryonic erythroid differentiation in the human leukemic cell line K562. Proc Natl Acad Sci U S A. 1981 Jan;78(1):348–352. doi: 10.1073/pnas.78.1.348. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Seger R., Krebs E. G. The MAPK signaling cascade. FASEB J. 1995 Jun;9(9):726–735. [PubMed] [Google Scholar]
  42. Seger R., Seger D., Reszka A. A., Munar E. S., Eldar-Finkelman H., Dobrowolska G., Jensen A. M., Campbell J. S., Fischer E. H., Krebs E. G. Overexpression of mitogen-activated protein kinase kinase (MAPKK) and its mutants in NIH 3T3 cells. Evidence that MAPKK involvement in cellular proliferation is regulated by phosphorylation of serine residues in its kinase subdomains VII and VIII. J Biol Chem. 1994 Oct 14;269(41):25699–25709. [PubMed] [Google Scholar]
  43. Sithanandam G., Latif F., Duh F. M., Bernal R., Smola U., Li H., Kuzmin I., Wixler V., Geil L., Shrestha S. 3pK, a new mitogen-activated protein kinase-activated protein kinase located in the small cell lung cancer tumor suppressor gene region. Mol Cell Biol. 1996 Mar;16(3):868–876. doi: 10.1128/mcb.16.3.868. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Stokoe D., Campbell D. G., Nakielny S., Hidaka H., Leevers S. J., Marshall C., Cohen P. MAPKAP kinase-2; a novel protein kinase activated by mitogen-activated protein kinase. EMBO J. 1992 Nov;11(11):3985–3994. doi: 10.1002/j.1460-2075.1992.tb05492.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Sturgill T. W., Ray L. B., Erikson E., Maller J. L. Insulin-stimulated MAP-2 kinase phosphorylates and activates ribosomal protein S6 kinase II. Nature. 1988 Aug 25;334(6184):715–718. doi: 10.1038/334715a0. [DOI] [PubMed] [Google Scholar]
  46. Sundaram M., Han M. Control and integration of cell signaling pathways during C. elegans vulval development. Bioessays. 1996 Jun;18(6):473–480. doi: 10.1002/bies.950180609. [DOI] [PubMed] [Google Scholar]
  47. Tetteroo P. A., Massaro F., Mulder A., Schreuder-van Gelder R., von dem Borne A. E. Megakaryoblastic differentiation of proerythroblastic K562 cell-line cells. Leuk Res. 1984;8(2):197–206. doi: 10.1016/0145-2126(84)90143-7. [DOI] [PubMed] [Google Scholar]
  48. Towatari M., May G. E., Marais R., Perkins G. R., Marshall C. J., Cowley S., Enver T. Regulation of GATA-2 phosphorylation by mitogen-activated protein kinase and interleukin-3. J Biol Chem. 1995 Feb 24;270(8):4101–4107. doi: 10.1074/jbc.270.8.4101. [DOI] [PubMed] [Google Scholar]
  49. Traverse S., Gomez N., Paterson H., Marshall C., Cohen P. Sustained activation of the mitogen-activated protein (MAP) kinase cascade may be required for differentiation of PC12 cells. Comparison of the effects of nerve growth factor and epidermal growth factor. Biochem J. 1992 Dec 1;288(Pt 2):351–355. doi: 10.1042/bj2880351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Umbhauer M., Marshall C. J., Mason C. S., Old R. W., Smith J. C. Mesoderm induction in Xenopus caused by activation of MAP kinase. Nature. 1995 Jul 6;376(6535):58–62. doi: 10.1038/376058a0. [DOI] [PubMed] [Google Scholar]
  51. Uzan G., Prandini M. H., Berthier R. Regulation of gene transcription during the differentiation of megakaryocytes. Thromb Haemost. 1995 Jul;74(1):210–212. [PubMed] [Google Scholar]
  52. Visvader J. E., Elefanty A. G., Strasser A., Adams J. M. GATA-1 but not SCL induces megakaryocytic differentiation in an early myeloid line. EMBO J. 1992 Dec;11(12):4557–4564. doi: 10.1002/j.1460-2075.1992.tb05557.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Vyas P., Vickers M. A., Simmons D. L., Ayyub H., Craddock C. F., Higgs D. R. Cis-acting sequences regulating expression of the human alpha-globin cluster lie within constitutively open chromatin. Cell. 1992 May 29;69(5):781–793. doi: 10.1016/0092-8674(92)90290-s. [DOI] [PubMed] [Google Scholar]
  54. Wadman I. A., Hsu H. L., Cobb M. H., Baer R. The MAP kinase phosphorylation site of TAL1 occurs within a transcriptional activation domain. Oncogene. 1994 Dec;9(12):3713–3716. [PubMed] [Google Scholar]
  55. Wilhide C. C., Van Dang C., Dipersio J., Kenedy A. A., Bray P. F. Overexpression of cyclin D1 in the Dami megakaryocytic cell line causes growth arrest. Blood. 1995 Jul 1;86(1):294–304. [PubMed] [Google Scholar]
  56. Williams M. J., Du X., Loftus J. C., Ginsberg M. H. Platelet adhesion receptors. Semin Cell Biol. 1995 Oct;6(5):305–314. doi: 10.1006/scel.1995.0040. [DOI] [PubMed] [Google Scholar]
  57. Wu X., Noh S. J., Zhou G., Dixon J. E., Guan K. L. Selective activation of MEK1 but not MEK2 by A-Raf from epidermal growth factor-stimulated Hela cells. J Biol Chem. 1996 Feb 9;271(6):3265–3271. doi: 10.1074/jbc.271.6.3265. [DOI] [PubMed] [Google Scholar]
  58. Xia Z., Dickens M., Raingeaud J., Davis R. J., Greenberg M. E. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science. 1995 Nov 24;270(5240):1326–1331. doi: 10.1126/science.270.5240.1326. [DOI] [PubMed] [Google Scholar]
  59. Yamada M., Komatsu N., Okada K., Kato T., Miyazaki H., Miura Y. Thrombopoietin induces tyrosine phosphorylation and activation of mitogen-activated protein kinases in a human thrombopoietin-dependent cell line. Biochem Biophys Res Commun. 1995 Dec 5;217(1):230–237. doi: 10.1006/bbrc.1995.2768. [DOI] [PubMed] [Google Scholar]
  60. Zhang Y., Wang Z., Ravid K. The cell cycle in polyploid megakaryocytes is associated with reduced activity of cyclin B1-dependent cdc2 kinase. J Biol Chem. 1996 Feb 23;271(8):4266–4272. doi: 10.1074/jbc.271.8.4266. [DOI] [PubMed] [Google Scholar]
  61. Zheng C. F., Guan K. L. Cloning and characterization of two distinct human extracellular signal-regulated kinase activator kinases, MEK1 and MEK2. J Biol Chem. 1993 May 25;268(15):11435–11439. [PubMed] [Google Scholar]
  62. Zutter M. M., Fong A. M., Krigman H. R., Santoro S. A. Differential regulation of the alpha 2 beta 1 and alpha IIb beta 3 integrin genes during megakaryocytic differentiation of pluripotential K562 cells. J Biol Chem. 1992 Oct 5;267(28):20233–20238. [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES