Abstract
In mammalian selenoprotein mRNAs, the recognition of UGA as selenocysteine requires selenocysteine insertion sequence (SECIS) elements that are contained in a stable stem-loop structure in the 3' untranslated region (UTR). In this study, we investigated the SECIS elements and cellular proteins required for selenocysteine insertion in rat phospholipid hydroperoxide glutathione peroxidase (PhGPx). We developed a translational readthrough assay for selenoprotein biosynthesis by using the gene for luciferase as a reporter. Insertion of a UGA or UAA codon into the coding region of luciferase abolished luciferase activity. However, activity was restored to the UGA mutant, but not to the UAA mutant, upon insertion of the PhGPx 3' UTR. The 3' UTR of rat glutathione peroxidase (GPx) also allowed translational readthrough, whereas the PhGPx and GPx antisense 3' UTRs did not. Deletion of two conserved SECIS elements in the PhGPx 3' UTR (AUGA in the 5' stem or AAAAC in the terminal loop) abolished readthrough activity. UV cross-linking studies identified a 120-kDa protein in rat testis that binds specifically to the sense strands of the PhGPx and GPx 3' UTRs. Direct cross-linking and competition experiments with deletion mutant RNAs demonstrated that binding of the 120-kDa protein requires the AUGA SECIS element but not AAAAC. Point mutations in the AUGA motif that abolished protein binding also prevented readthrough of the UGA codon. Our results suggest that the 120-kDa protein is a significant component of the mechanism of selenocysteine incorporation in mammalian cells.
Full Text
The Full Text of this article is available as a PDF (1.9 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baron C., Heider J., Böck A. Interaction of translation factor SELB with the formate dehydrogenase H selenopolypeptide mRNA. Proc Natl Acad Sci U S A. 1993 May 1;90(9):4181–4185. doi: 10.1073/pnas.90.9.4181. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berry M. J., Banu L., Chen Y. Y., Mandel S. J., Kieffer J. D., Harney J. W., Larsen P. R. Recognition of UGA as a selenocysteine codon in type I deiodinase requires sequences in the 3' untranslated region. Nature. 1991 Sep 19;353(6341):273–276. doi: 10.1038/353273a0. [DOI] [PubMed] [Google Scholar]
- Berry M. J., Banu L., Harney J. W., Larsen P. R. Functional characterization of the eukaryotic SECIS elements which direct selenocysteine insertion at UGA codons. EMBO J. 1993 Aug;12(8):3315–3322. doi: 10.1002/j.1460-2075.1993.tb06001.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berry M. J., Maia A. L., Kieffer J. D., Harney J. W., Larsen P. R. Substitution of cysteine for selenocysteine in type I iodothyronine deiodinase reduces the catalytic efficiency of the protein but enhances its translation. Endocrinology. 1992 Oct;131(4):1848–1852. doi: 10.1210/endo.131.4.1396330. [DOI] [PubMed] [Google Scholar]
- Brigelius-Flohé R., Aumann K. D., Blöcker H., Gross G., Kiess M., Klöppel K. D., Maiorino M., Roveri A., Schuckelt R., Usani F. Phospholipid-hydroperoxide glutathione peroxidase. Genomic DNA, cDNA, and deduced amino acid sequence. J Biol Chem. 1994 Mar 11;269(10):7342–7348. [PubMed] [Google Scholar]
- Böck A., Forchhammer K., Heider J., Baron C. Selenoprotein synthesis: an expansion of the genetic code. Trends Biochem Sci. 1991 Dec;16(12):463–467. doi: 10.1016/0968-0004(91)90180-4. [DOI] [PubMed] [Google Scholar]
- Dodson R. E., Shapiro D. J. An estrogen-inducible protein binds specifically to a sequence in the 3' untranslated region of estrogen-stabilized vitellogenin mRNA. Mol Cell Biol. 1994 May;14(5):3130–3138. doi: 10.1128/mcb.14.5.3130. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Driscoll D. M., Lakhe-Reddy S., Oleksa L. M., Martinez D. Induction of RNA editing at heterologous sites by sequences in apolipoprotein B mRNA. Mol Cell Biol. 1993 Dec;13(12):7288–7294. doi: 10.1128/mcb.13.12.7288. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Esworthy R. S., Doan K., Doroshow J. H., Chu F. F. Cloning and sequencing of the cDNA encoding a human testis phospholipid hydroperoxide glutathione peroxidase. Gene. 1994 Jul 8;144(2):317–318. doi: 10.1016/0378-1119(94)90400-6. [DOI] [PubMed] [Google Scholar]
- Forchhammer K., Leinfelder W., Böck A. Identification of a novel translation factor necessary for the incorporation of selenocysteine into protein. Nature. 1989 Nov 23;342(6248):453–456. doi: 10.1038/342453a0. [DOI] [PubMed] [Google Scholar]
- Gelpi C., Sontheimer E. J., Rodriguez-Sanchez J. L. Autoantibodies against a serine tRNA-protein complex implicated in cotranslational selenocysteine insertion. Proc Natl Acad Sci U S A. 1992 Oct 15;89(20):9739–9743. doi: 10.1073/pnas.89.20.9739. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heider J., Baron C., Böck A. Coding from a distance: dissection of the mRNA determinants required for the incorporation of selenocysteine into protein. EMBO J. 1992 Oct;11(10):3759–3766. doi: 10.1002/j.1460-2075.1992.tb05461.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hill K. E., Lloyd R. S., Yang J. G., Read R., Burk R. F. The cDNA for rat selenoprotein P contains 10 TGA codons in the open reading frame. J Biol Chem. 1991 Jun 5;266(16):10050–10053. [PubMed] [Google Scholar]
- Ho Y. S., Howard A. J., Crapo J. D. Nucleotide sequence of a rat glutathione peroxidase cDNA. Nucleic Acids Res. 1988 Jun 10;16(11):5207–5207. doi: 10.1093/nar/16.11.5207. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hubert N., Walczak R., Carbon P., Krol A. A protein binds the selenocysteine insertion element in the 3'-UTR of mammalian selenoprotein mRNAs. Nucleic Acids Res. 1996 Feb 1;24(3):464–469. doi: 10.1093/nar/24.3.464. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jaeger J. A., Turner D. H., Zuker M. Improved predictions of secondary structures for RNA. Proc Natl Acad Sci U S A. 1989 Oct;86(20):7706–7710. doi: 10.1073/pnas.86.20.7706. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kim I. Y., Stadtman T. C. Selenophosphate synthetase: detection in extracts of rat tissues by immunoblot assay and partial purification of the enzyme from the archaean Methanococcus vannielii. Proc Natl Acad Sci U S A. 1995 Aug 15;92(17):7710–7713. doi: 10.1073/pnas.92.17.7710. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kollmus H., Flohé L., McCarthy J. E. Analysis of eukaryotic mRNA structures directing cotranslational incorporation of selenocysteine. Nucleic Acids Res. 1996 Apr 1;24(7):1195–1201. doi: 10.1093/nar/24.7.1195. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee B. J., Worland P. J., Davis J. N., Stadtman T. C., Hatfield D. L. Identification of a selenocysteyl-tRNA(Ser) in mammalian cells that recognizes the nonsense codon, UGA. J Biol Chem. 1989 Jun 15;264(17):9724–9727. [PubMed] [Google Scholar]
- Leonard J. L., Leonard D. M., Shen Q., Farwell A. P., Newburger P. E. Selenium-regulated translation control of heterologous gene expression: normal function of selenocysteine-substituted gene products. J Cell Biochem. 1996 Jun 1;61(3):410–419. doi: 10.1002/(sici)1097-4644(19960601)61:3<410::aid-jcb8>3.0.co;2-w. [DOI] [PubMed] [Google Scholar]
- Low S. C., Berry M. J. Knowing when not to stop: selenocysteine incorporation in eukaryotes. Trends Biochem Sci. 1996 Jun;21(6):203–208. [PubMed] [Google Scholar]
- Low S. C., Harney J. W., Berry M. J. Cloning and functional characterization of human selenophosphate synthetase, an essential component of selenoprotein synthesis. J Biol Chem. 1995 Sep 15;270(37):21659–21664. doi: 10.1074/jbc.270.37.21659. [DOI] [PubMed] [Google Scholar]
- Martin G. W., 3rd, Harney J. W., Berry M. J. Selenocysteine incorporation in eukaryotes: insights into mechanism and efficiency from sequence, structure, and spacing proximity studies of the type 1 deiodinase SECIS element. RNA. 1996 Feb;2(2):171–182. [PMC free article] [PubMed] [Google Scholar]
- McCaughan K. K., Brown C. M., Dalphin M. E., Berry M. J., Tate W. P. Translational termination efficiency in mammals is influenced by the base following the stop codon. Proc Natl Acad Sci U S A. 1995 Jun 6;92(12):5431–5435. doi: 10.1073/pnas.92.12.5431. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pushpa-Rekha T. R., Burdsall A. L., Oleksa L. M., Chisolm G. M., Driscoll D. M. Rat phospholipid-hydroperoxide glutathione peroxidase. cDNA cloning and identification of multiple transcription and translation start sites. J Biol Chem. 1995 Nov 10;270(45):26993–26999. doi: 10.1074/jbc.270.45.26993. [DOI] [PubMed] [Google Scholar]
- Rocher C., Faucheu C., Hervé F., Bénicourt C., Lalanne J. L. Cloning of murine SeGpx cDNA and synthesis of mutated GPx proteins in Escherichia coli. Gene. 1991 Feb 15;98(2):193–200. doi: 10.1016/0378-1119(91)90173-9. [DOI] [PubMed] [Google Scholar]
- Roveri A., Casasco A., Maiorino M., Dalan P., Calligaro A., Ursini F. Phospholipid hydroperoxide glutathione peroxidase of rat testis. Gonadotropin dependence and immunocytochemical identification. J Biol Chem. 1992 Mar 25;267(9):6142–6146. [PubMed] [Google Scholar]
- Shen Q., Chu F. F., Newburger P. E. Sequences in the 3'-untranslated region of the human cellular glutathione peroxidase gene are necessary and sufficient for selenocysteine incorporation at the UGA codon. J Biol Chem. 1993 May 25;268(15):11463–11469. [PubMed] [Google Scholar]
- Shen Q., Leonard J. L., Newburger P. E. Structure and function of the selenium translation element in the 3'-untranslated region of human cellular glutathione peroxidase mRNA. RNA. 1995 Jul;1(5):519–525. [PMC free article] [PubMed] [Google Scholar]
- Shen Q., McQuilkin P. A., Newburger P. E. RNA-binding proteins that specifically recognize the selenocysteine insertion sequence of human cellular glutathione peroxidase mRNA. J Biol Chem. 1995 Dec 22;270(51):30448–30452. doi: 10.1074/jbc.270.51.30448. [DOI] [PubMed] [Google Scholar]
- Stadtman T. C. Biosynthesis and function of selenocysteine-containing enzymes. J Biol Chem. 1991 Sep 5;266(25):16257–16260. [PubMed] [Google Scholar]
- Walczak R., Westhof E., Carbon P., Krol A. A novel RNA structural motif in the selenocysteine insertion element of eukaryotic selenoprotein mRNAs. RNA. 1996 Apr;2(4):367–379. [PMC free article] [PubMed] [Google Scholar]
- Weitzel F., Ursini F., Wendel A. Phospholipid hydroperoxide glutathione peroxidase in various mouse organs during selenium deficiency and repletion. Biochim Biophys Acta. 1990 Nov 9;1036(2):88–94. doi: 10.1016/0304-4165(90)90018-r. [DOI] [PubMed] [Google Scholar]
- Yamada K. A new translational elongation factor for selenocysteyl-tRNA in eucaryotes. FEBS Lett. 1995 Dec 27;377(3):313–317. doi: 10.1016/0014-5793(95)01352-0. [DOI] [PubMed] [Google Scholar]
- Zinoni F., Birkmann A., Leinfelder W., Böck A. Cotranslational insertion of selenocysteine into formate dehydrogenase from Escherichia coli directed by a UGA codon. Proc Natl Acad Sci U S A. 1987 May;84(10):3156–3160. doi: 10.1073/pnas.84.10.3156. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zinoni F., Heider J., Böck A. Features of the formate dehydrogenase mRNA necessary for decoding of the UGA codon as selenocysteine. Proc Natl Acad Sci U S A. 1990 Jun;87(12):4660–4664. doi: 10.1073/pnas.87.12.4660. [DOI] [PMC free article] [PubMed] [Google Scholar]