Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1997 Apr;17(4):2076–2089. doi: 10.1128/mcb.17.4.2076

High levels of human gamma-globin gene expression in adult mice carrying a transgene of deletion-type hereditary persistence of fetal hemoglobin.

M O Arcasoy 1, M Romana 1, M E Fabry 1, E Skarpidi 1, R L Nagel 1, B G Forget 1
PMCID: PMC232055  PMID: 9121456

Abstract

Persistent expression of the gamma-globin genes in adults with deletion types of hereditary persistence of fetal hemoglobin (HPFH) is thought to be mediated by enhancer-like effects of DNA sequences at the 3' breakpoints of the deletions. A transgenic mouse model of deletion-type HPFH was generated by using a DNA fragment containing both human gamma-globin genes and HPFH-2 breakpoint DNA sequences linked to the core sequences of the locus control region (LCR) of the human beta-globin gene cluster. Analysis of gamma-globin expression in six HPFH transgenic lines demonstrated persistence of gamma-globin mRNA and peptides in erythrocytes of adult HPFH transgenic mice. Analysis of the hemoglobin phenotype of adult HPFH transgenic animals by isoelectric focusing showed the presence of hybrid mouse alpha2-human gamma2 tetramers as well as human gamma4 homotetramers (hemoglobin Bart's). In contrast, correct developmental regulation of the gamma-globin genes with essentially absent gamma-globin gene expression in adult erythroid cells was observed in two control non-HPFH transgenic lines, consistent with autonomous silencing of normal human gamma-globin expression in adult transgenic mice. Interestingly, marked preferential overexpression of the LCR-distal (A)gamma-globin gene but not of the LCR-proximal (G)gamma-globin gene was observed at all developmental stages in erythroid cells of HPFH-2 transgenic mice. These findings were also associated with the formation of a DNase I-hypersensitive site in the HPFH-2 breakpoint DNA of transgenic murine erythroid cells, as occurs in normal human erythroid cells in vivo. These results indicate that breakpoint DNA sequences in deletion-type HPFH-2 can modify the developmentally regulated expression of the gamma-globin genes.

Full Text

The Full Text of this article is available as a PDF (2.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anagnou N. P., Perez-Stable C., Gelinas R., Costantini F., Liapaki K., Constantopoulou M., Kosteas T., Moschonas N. K., Stamatoyannopoulos G. Sequences located 3' to the breakpoint of the hereditary persistence of fetal hemoglobin-3 deletion exhibit enhancer activity and can modify the developmental expression of the human fetal A gamma-globin gene in transgenic mice. J Biol Chem. 1995 Apr 28;270(17):10256–10263. doi: 10.1074/jbc.270.17.10256. [DOI] [PubMed] [Google Scholar]
  2. Bakioglu I., Kutlar A., Huisman T. H. Differences between the levels of G gamma chain in the fetal hemoglobin in two types of hereditary persistence of fetal hemoglobin are linked with a variation in the DNA sequence. Biochem Genet. 1986 Feb;24(1-2):149–151. doi: 10.1007/BF00502985. [DOI] [PubMed] [Google Scholar]
  3. Behringer R. R., Ryan T. M., Palmiter R. D., Brinster R. L., Townes T. M. Human gamma- to beta-globin gene switching in transgenic mice. Genes Dev. 1990 Mar;4(3):380–389. doi: 10.1101/gad.4.3.380. [DOI] [PubMed] [Google Scholar]
  4. Berry M., Grosveld F., Dillon N. A single point mutation is the cause of the Greek form of hereditary persistence of fetal haemoglobin. Nature. 1992 Aug 6;358(6386):499–502. doi: 10.1038/358499a0. [DOI] [PubMed] [Google Scholar]
  5. Bollekens J. A., Forget B. G. Delta beta thalassemia and hereditary persistence of fetal hemoglobin. Hematol Oncol Clin North Am. 1991 Jun;5(3):399–422. [PubMed] [Google Scholar]
  6. Chada K., Magram J., Costantini F. An embryonic pattern of expression of a human fetal globin gene in transgenic mice. Nature. 1986 Feb 20;319(6055):685–689. doi: 10.1038/319685a0. [DOI] [PubMed] [Google Scholar]
  7. Collins F. S., Cole J. L., Lockwood W. K., Iannuzzi M. C. The deletion in both common types of hereditary persistence of fetal hemoglobin is approximately 105 kilobases. Blood. 1987 Dec;70(6):1797–1803. [PubMed] [Google Scholar]
  8. Collins F. S., Stoeckert C. J., Jr, Serjeant G. R., Forget B. G., Weissman S. M. G gamma beta+ hereditary persistence of fetal hemoglobin: cosmid cloning and identification of a specific mutation 5' to the G gamma gene. Proc Natl Acad Sci U S A. 1984 Aug;81(15):4894–4898. doi: 10.1073/pnas.81.15.4894. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Collins F. S., Weissman S. M. The molecular genetics of human hemoglobin. Prog Nucleic Acid Res Mol Biol. 1984;31:315–462. doi: 10.1016/s0079-6603(08)60382-7. [DOI] [PubMed] [Google Scholar]
  10. Dillon N., Grosveld F. Human gamma-globin genes silenced independently of other genes in the beta-globin locus. Nature. 1991 Mar 21;350(6315):252–254. doi: 10.1038/350252a0. [DOI] [PubMed] [Google Scholar]
  11. Dillon N., Grosveld F. Transcriptional regulation of multigene loci: multilevel control. Trends Genet. 1993 Apr;9(4):134–137. doi: 10.1016/0168-9525(93)90208-y. [DOI] [PubMed] [Google Scholar]
  12. Elder J. T., Forrester W. C., Thompson C., Mager D., Henthorn P., Peretz M., Papayannopoulou T., Groudine M. Translocation of an erythroid-specific hypersensitive site in deletion-type hereditary persistence of fetal hemoglobin. Mol Cell Biol. 1990 Apr;10(4):1382–1389. doi: 10.1128/mcb.10.4.1382. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Engel J. D. Developmental regulation of human beta-globin gene transcription: a switch of loyalties? Trends Genet. 1993 Sep;9(9):304–309. doi: 10.1016/0168-9525(93)90248-g. [DOI] [PubMed] [Google Scholar]
  14. Enver T., Raich N., Ebens A. J., Papayannopoulou T., Costantini F., Stamatoyannopoulos G. Developmental regulation of human fetal-to-adult globin gene switching in transgenic mice. Nature. 1990 Mar 22;344(6264):309–313. doi: 10.1038/344309a0. [DOI] [PubMed] [Google Scholar]
  15. Fabry M. E., Sengupta A., Suzuka S. M., Costantini F., Rubin E. M., Hofrichter J., Christoph G., Manci E., Culberson D., Factor S. M. A second generation transgenic mouse model expressing both hemoglobin S (HbS) and HbS-Antilles results in increased phenotypic severity. Blood. 1995 Sep 15;86(6):2419–2428. [PubMed] [Google Scholar]
  16. Feingold E. A., Forget B. G. The breakpoint of a large deletion causing hereditary persistence of fetal hemoglobin occurs within an erythroid DNA domain remote from the beta-globin gene cluster. Blood. 1989 Nov 1;74(6):2178–2186. [PubMed] [Google Scholar]
  17. Forrester W. C., Novak U., Gelinas R., Groudine M. Molecular analysis of the human beta-globin locus activation region. Proc Natl Acad Sci U S A. 1989 Jul;86(14):5439–5443. doi: 10.1073/pnas.86.14.5439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Gaensler K. M., Kitamura M., Kan Y. W. Germ-line transmission and developmental regulation of a 150-kb yeast artificial chromosome containing the human beta-globin locus in transgenic mice. Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):11381–11385. doi: 10.1073/pnas.90.23.11381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Giglioni B., Casini C., Mantovani R., Merli S., Comi P., Ottolenghi S., Saglio G., Camaschella C., Mazza U. A molecular study of a family with Greek hereditary persistence of fetal hemoglobin and beta-thalassemia. EMBO J. 1984 Nov;3(11):2641–2645. doi: 10.1002/j.1460-2075.1984.tb02187.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Gilman J. G., Huisman T. H. DNA sequence variation associated with elevated fetal G gamma globin production. Blood. 1985 Oct;66(4):783–787. [PubMed] [Google Scholar]
  21. Grosveld F., Antoniou M., Berry M., de Boer E., Dillon N., Ellis J., Fraser P., Hurst J., Imam A., Meijer D. Regulation of human globin gene switching. Cold Spring Harb Symp Quant Biol. 1993;58:7–13. doi: 10.1101/sqb.1993.058.01.004. [DOI] [PubMed] [Google Scholar]
  22. Hanscombe O., Whyatt D., Fraser P., Yannoutsos N., Greaves D., Dillon N., Grosveld F. Importance of globin gene order for correct developmental expression. Genes Dev. 1991 Aug;5(8):1387–1394. doi: 10.1101/gad.5.8.1387. [DOI] [PubMed] [Google Scholar]
  23. Huisman T. H., Schroeder W. A., Efremov G. D., Duma H., Mladenovski B., Hyman C. B., Rachmilewitz E. A., Bouver N., Miller A., Brodie A. The present status of the heterogeneity of fetal hemoglobin in beta-thalassemia: an attempt to unify some observations in thalassemia and related conditions. Ann N Y Acad Sci. 1974;232(0):107–124. doi: 10.1111/j.1749-6632.1974.tb20576.x. [DOI] [PubMed] [Google Scholar]
  24. Kollias G., Wrighton N., Hurst J., Grosveld F. Regulated expression of human A gamma-, beta-, and hybrid gamma beta-globin genes in transgenic mice: manipulation of the developmental expression patterns. Cell. 1986 Jul 4;46(1):89–94. doi: 10.1016/0092-8674(86)90862-7. [DOI] [PubMed] [Google Scholar]
  25. Kutlar A., Gardiner M. B., Headlee M. G., Reese A. L., Cleek M. P., Nagle S., Sukumaran P. K., Huisman T. H. Heterogeneity in the molecular basis of three types of hereditary persistence of fetal hemoglobin and the relative synthesis of the G gamma and A gamma types of gamma chain. Biochem Genet. 1984 Feb;22(1-2):21–35. doi: 10.1007/BF00499284. [DOI] [PubMed] [Google Scholar]
  26. Li Q., Stamatoyannopoulos J. A. Position independence and proper developmental control of gamma-globin gene expression require both a 5' locus control region and a downstream sequence element. Mol Cell Biol. 1994 Sep;14(9):6087–6096. doi: 10.1128/mcb.14.9.6087. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Navas P. A., Josephson B., Furukawa T., Stamatoyannopoulos G., Li Q. The position of integration affects expression of the A gamma-globin-encoding gene linked to HS3 in transgenic mice. Gene. 1995 Jul 28;160(2):165–171. doi: 10.1016/0378-1119(95)00202-h. [DOI] [PubMed] [Google Scholar]
  28. Peterson K. R., Clegg C. H., Huxley C., Josephson B. M., Haugen H. S., Furukawa T., Stamatoyannopoulos G. Transgenic mice containing a 248-kb yeast artificial chromosome carrying the human beta-globin locus display proper developmental control of human globin genes. Proc Natl Acad Sci U S A. 1993 Aug 15;90(16):7593–7597. doi: 10.1073/pnas.90.16.7593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Peterson K. R., Li Q. L., Clegg C. H., Furukawa T., Navas P. A., Norton E. J., Kimbrough T. G., Stamatoyannopoulos G. Use of yeast artificial chromosomes (YACs) in studies of mammalian development: production of beta-globin locus YAC mice carrying human globin developmental mutants. Proc Natl Acad Sci U S A. 1995 Jun 6;92(12):5655–5659. doi: 10.1073/pnas.92.12.5655. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Peterson K. R., Stamatoyannopoulos G. Role of gene order in developmental control of human gamma- and beta-globin gene expression. Mol Cell Biol. 1993 Aug;13(8):4836–4843. doi: 10.1128/mcb.13.8.4836. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Poncz M., Henthorn P., Stoeckert C., Surrey S. Globin gene expression in hereditary persistence of fetal haemoglobin and (delta beta) (0)-thalassaemia. Oxf Surv Eukaryot Genes. 1988;5:163–203. [PubMed] [Google Scholar]
  32. Schroeder W. A., Shelton J. B., Shelton J. R., Huynh V., Teplow D. B. High performance liquid chromatographic separation of the globin chains of non-human hemoglobins. Hemoglobin. 1985;9(5):461–482. doi: 10.3109/03630268508997024. [DOI] [PubMed] [Google Scholar]
  33. Stamatoyannopoulos G., Josephson B., Zhang J. W., Li Q. Developmental regulation of human gamma-globin genes in transgenic mice. Mol Cell Biol. 1993 Dec;13(12):7636–7644. doi: 10.1128/mcb.13.12.7636. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Starck J., Sarkar R., Romana M., Bhargava A., Scarpa A. L., Tanaka M., Chamberlain J. W., Weissman S. M., Forget B. G. Developmental regulation of human gamma- and beta-globin genes in the absence of the locus control region. Blood. 1994 Sep 1;84(5):1656–1665. [PubMed] [Google Scholar]
  35. Strouboulis J., Dillon N., Grosveld F. Developmental regulation of a complete 70-kb human beta-globin locus in transgenic mice. Genes Dev. 1992 Oct;6(10):1857–1864. doi: 10.1101/gad.6.10.1857. [DOI] [PubMed] [Google Scholar]
  36. Tuan D., Feingold E., Newman M., Weissman S. M., Forget B. G. Different 3' end points of deletions causing delta beta-thalassemia and hereditary persistence of fetal hemoglobin: implications for the control of gamma-globin gene expression in man. Proc Natl Acad Sci U S A. 1983 Nov;80(22):6937–6941. doi: 10.1073/pnas.80.22.6937. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Tuan D., London I. M. Mapping of DNase I-hypersensitive sites in the upstream DNA of human embryonic epsilon-globin gene in K562 leukemia cells. Proc Natl Acad Sci U S A. 1984 May;81(9):2718–2722. doi: 10.1073/pnas.81.9.2718. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES