Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1997 May;17(5):2642–2648. doi: 10.1128/mcb.17.5.2642

Nuclear receptor corepressors activate rather than suppress basal transcription of genes that are negatively regulated by thyroid hormone.

T Tagami 1, L D Madison 1, T Nagaya 1, J L Jameson 1
PMCID: PMC232114  PMID: 9111334

Abstract

A group of transcriptional cofactors referred to as corepressors (CoRs) were recently shown to play a central role in basal silencing of genes that contain positive triiodothyronine (T3) response elements. In a reciprocal manner, negatively regulated genes are stimulated by unliganded thyroid hormone receptor (TR) and repressed upon the addition of T3. We used a TR beta mutant, called P214R, which fails to interact with CoRs, to examine whether CoRs also play a role in the control of genes that are negatively regulated in response to T3. In studies of three negatively regulated genes (the pituitary thyroid-stimulating hormone alpha-subunit [TSH alpha], TSH beta, and hypothalamic thyrotropin-releasing hormone [TRH] genes), stimulation of basal promoter activity by unliganded TR beta was impaired by introducing the P214R CoR mutation. Coexpression of each of the CoRs SMRT (silencing mediator for retinoid receptors and TRs) and NCoR (nuclear receptor CoR) enhanced basal stimulation of the negatively regulated promoters in a TR-dependent manner, but this effect was not seen with the P214R TR mutant. The mechanism of CoR effects on negatively regulated promoters was explored further with a series of GAL4-TR chimeric receptors and mutants that allowed TR effects to be assessed independently of receptor interactions with DNA. These experiments revealed that, like the negative regulation of genes by wild-type TR, basal activation occurred with GAL4-TR, but not with the GAL4-P214R mutant, and was reversed by the addition of T3. These results suggest that TR interactions with negatively regulated genes may be driven through protein-protein interactions. We conclude that a subset of negatively regulated genes are controlled by a novel mechanism that involves TR-mediated recruitment and basal activation by SMRT and NCoR. Addition of T3 reverses basal activation, perhaps by dissociation of CoRs.

Full Text

The Full Text of this article is available as a PDF (378.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baniahmad A., Leng X., Burris T. P., Tsai S. Y., Tsai M. J., O'Malley B. W. The tau 4 activation domain of the thyroid hormone receptor is required for release of a putative corepressor(s) necessary for transcriptional silencing. Mol Cell Biol. 1995 Jan;15(1):76–86. doi: 10.1128/mcb.15.1.76. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baniahmad A., Steiner C., Köhne A. C., Renkawitz R. Modular structure of a chicken lysozyme silencer: involvement of an unusual thyroid hormone receptor binding site. Cell. 1990 May 4;61(3):505–514. doi: 10.1016/0092-8674(90)90532-j. [DOI] [PubMed] [Google Scholar]
  3. Barettino D., Vivanco Ruiz M. M., Stunnenberg H. G. Characterization of the ligand-dependent transactivation domain of thyroid hormone receptor. EMBO J. 1994 Jul 1;13(13):3039–3049. doi: 10.1002/j.1460-2075.1994.tb06603.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Beck-Peccoz P., Chatterjee V. K., Chin W. W., DeGroot L. J., Jameson J. L., Nakamura H., Refetoff S., Usala S. J., Weintraub B. D. Nomenclature of thyroid hormone receptor beta-gene mutations in resistance to thyroid hormone: consensus statement from the first workshop on thyroid hormone resistance, July 10-11, 1993, Cambridge, United Kingdom. J Clin Endocrinol Metab. 1994 Apr;78(4):990–993. doi: 10.1210/jcem.78.4.8157732. [DOI] [PubMed] [Google Scholar]
  5. Bodenner D. L., Mroczynski M. A., Weintraub B. D., Radovick S., Wondisford F. E. A detailed functional and structural analysis of a major thyroid hormone inhibitory element in the human thyrotropin beta-subunit gene. J Biol Chem. 1991 Nov 15;266(32):21666–21673. [PubMed] [Google Scholar]
  6. Brent G. A., Dunn M. K., Harney J. W., Gulick T., Larsen P. R., Moore D. D. Thyroid hormone aporeceptor represses T3-inducible promoters and blocks activity of the retinoic acid receptor. New Biol. 1989 Dec;1(3):329–336. [PubMed] [Google Scholar]
  7. Carr F. E., Kaseem L. L., Wong N. C. Thyroid hormone inhibits thyrotropin gene expression via a position-independent negative L-triiodothyronine-responsive element. J Biol Chem. 1992 Sep 15;267(26):18689–18694. [PubMed] [Google Scholar]
  8. Chatterjee V. K., Lee J. K., Rentoumis A., Jameson J. L. Negative regulation of the thyroid-stimulating hormone alpha gene by thyroid hormone: receptor interaction adjacent to the TATA box. Proc Natl Acad Sci U S A. 1989 Dec;86(23):9114–9118. doi: 10.1073/pnas.86.23.9114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chen J. D., Evans R. M. A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature. 1995 Oct 5;377(6548):454–457. doi: 10.1038/377454a0. [DOI] [PubMed] [Google Scholar]
  10. Chin W. W., Carr F. E., Burnside J., Darling D. S. Thyroid hormone regulation of thyrotropin gene expression. Recent Prog Horm Res. 1993;48:393–414. doi: 10.1016/b978-0-12-571148-7.50018-x. [DOI] [PubMed] [Google Scholar]
  11. Damm K., Evans R. M. Identification of a domain required for oncogenic activity and transcriptional suppression by v-erbA and thyroid-hormone receptor alpha. Proc Natl Acad Sci U S A. 1993 Nov 15;90(22):10668–10672. doi: 10.1073/pnas.90.22.10668. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Damm K., Thompson C. C., Evans R. M. Protein encoded by v-erbA functions as a thyroid-hormone receptor antagonist. Nature. 1989 Jun 22;339(6226):593–597. doi: 10.1038/339593a0. [DOI] [PubMed] [Google Scholar]
  13. Diamond M. I., Miner J. N., Yoshinaga S. K., Yamamoto K. R. Transcription factor interactions: selectors of positive or negative regulation from a single DNA element. Science. 1990 Sep 14;249(4974):1266–1272. doi: 10.1126/science.2119054. [DOI] [PubMed] [Google Scholar]
  14. Drolet D. W., Scully K. M., Simmons D. M., Wegner M., Chu K. T., Swanson L. W., Rosenfeld M. G. TEF, a transcription factor expressed specifically in the anterior pituitary during embryogenesis, defines a new class of leucine zipper proteins. Genes Dev. 1991 Oct;5(10):1739–1753. doi: 10.1101/gad.5.10.1739. [DOI] [PubMed] [Google Scholar]
  15. Durand B., Saunders M., Gaudon C., Roy B., Losson R., Chambon P. Activation function 2 (AF-2) of retinoic acid receptor and 9-cis retinoic acid receptor: presence of a conserved autonomous constitutive activating domain and influence of the nature of the response element on AF-2 activity. EMBO J. 1994 Nov 15;13(22):5370–5382. doi: 10.1002/j.1460-2075.1994.tb06872.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Feng P., Li Q. L., Satoh T., Wilber J. F. Ligand (T3) dependent and independent effects of thyroid hormone receptors upon human TRH gene transcription in neuroblastoma cells. Biochem Biophys Res Commun. 1994 Apr 15;200(1):171–177. doi: 10.1006/bbrc.1994.1430. [DOI] [PubMed] [Google Scholar]
  17. Forman B. M., Yang C. R., Stanley F., Casanova J., Samuels H. H. c-erbA protooncogenes mediate thyroid hormone-dependent and independent regulation of the rat growth hormone and prolactin genes. Mol Endocrinol. 1988 Oct;2(10):902–911. doi: 10.1210/mend-2-10-902. [DOI] [PubMed] [Google Scholar]
  18. Graham F. L., van der Eb A. J. A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology. 1973 Apr;52(2):456–467. doi: 10.1016/0042-6822(73)90341-3. [DOI] [PubMed] [Google Scholar]
  19. Hollenberg A. N., Monden T., Flynn T. R., Boers M. E., Cohen O., Wondisford F. E. The human thyrotropin-releasing hormone gene is regulated by thyroid hormone through two distinct classes of negative thyroid hormone response elements. Mol Endocrinol. 1995 May;9(5):540–550. doi: 10.1210/mend.9.5.7565802. [DOI] [PubMed] [Google Scholar]
  20. Hollenberg A. N., Monden T., Wondisford F. E. Ligand-independent and -dependent functions of thyroid hormone receptor isoforms depend upon their distinct amino termini. J Biol Chem. 1995 Jun 16;270(24):14274–14280. doi: 10.1074/jbc.270.24.14274. [DOI] [PubMed] [Google Scholar]
  21. Hörlein A. J., När A. M., Heinzel T., Torchia J., Gloss B., Kurokawa R., Ryan A., Kamei Y., Söderström M., Glass C. K. Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor. Nature. 1995 Oct 5;377(6548):397–404. doi: 10.1038/377397a0. [DOI] [PubMed] [Google Scholar]
  22. Kamei Y., Xu L., Heinzel T., Torchia J., Kurokawa R., Gloss B., Lin S. C., Heyman R. A., Rose D. W., Glass C. K. A CBP integrator complex mediates transcriptional activation and AP-1 inhibition by nuclear receptors. Cell. 1996 May 3;85(3):403–414. doi: 10.1016/s0092-8674(00)81118-6. [DOI] [PubMed] [Google Scholar]
  23. Kurokawa R., Söderström M., Hörlein A., Halachmi S., Brown M., Rosenfeld M. G., Glass C. K. Polarity-specific activities of retinoic acid receptors determined by a co-repressor. Nature. 1995 Oct 5;377(6548):451–454. doi: 10.1038/377451a0. [DOI] [PubMed] [Google Scholar]
  24. Lee J. W., Choi H. S., Gyuris J., Brent R., Moore D. D. Two classes of proteins dependent on either the presence or absence of thyroid hormone for interaction with the thyroid hormone receptor. Mol Endocrinol. 1995 Feb;9(2):243–254. doi: 10.1210/mend.9.2.7776974. [DOI] [PubMed] [Google Scholar]
  25. Madison L. D., Ahlquist J. A., Rogers S. D., Jameson J. L. Negative regulation of the glycoprotein hormone alpha gene promoter by thyroid hormone: mutagenesis of a proximal receptor binding site preserves transcriptional repression. Mol Cell Endocrinol. 1993 Jul;94(1):129–136. doi: 10.1016/0303-7207(93)90060-w. [DOI] [PubMed] [Google Scholar]
  26. Margolskee R. F., McHendry-Rinde B., Horn R. Panning transfected cells for electrophysiological studies. Biotechniques. 1993 Nov;15(5):906–911. [PubMed] [Google Scholar]
  27. Nagaya T., Jameson J. L. Distinct dimerization domains provide antagonist pathways for thyroid hormone receptor action. J Biol Chem. 1993 Nov 15;268(32):24278–24282. [PubMed] [Google Scholar]
  28. Nagaya T., Jameson J. L. Thyroid hormone receptor dimerization is required for dominant negative inhibition by mutations that cause thyroid hormone resistance. J Biol Chem. 1993 Jul 25;268(21):15766–15771. [PubMed] [Google Scholar]
  29. Nagaya T., Madison L. D., Jameson J. L. Thyroid hormone receptor mutants that cause resistance to thyroid hormone. Evidence for receptor competition for DNA sequences in target genes. J Biol Chem. 1992 Jun 25;267(18):13014–13019. [PubMed] [Google Scholar]
  30. Nawaz Z., Tsai M. J., O'Malley B. W. Specific mutations in the ligand binding domain selectively abolish the silencing function of human thyroid hormone receptor beta. Proc Natl Acad Sci U S A. 1995 Dec 5;92(25):11691–11695. doi: 10.1073/pnas.92.25.11691. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. När A. M., Boutin J. M., Lipkin S. M., Yu V. C., Holloway J. M., Glass C. K., Rosenfeld M. G. The orientation and spacing of core DNA-binding motifs dictate selective transcriptional responses to three nuclear receptors. Cell. 1991 Jun 28;65(7):1267–1279. doi: 10.1016/0092-8674(91)90021-p. [DOI] [PubMed] [Google Scholar]
  32. Oppenheimer J. H., Schwartz H. L., Mariash C. N., Kinlaw W. B., Wong N. C., Freake H. C. Advances in our understanding of thyroid hormone action at the cellular level. Endocr Rev. 1987 Aug;8(3):288–308. doi: 10.1210/edrv-8-3-288. [DOI] [PubMed] [Google Scholar]
  33. Saatcioglu F., Bartunek P., Deng T., Zenke M., Karin M. A conserved C-terminal sequence that is deleted in v-ErbA is essential for the biological activities of c-ErbA (the thyroid hormone receptor). Mol Cell Biol. 1993 Jun;13(6):3675–3685. doi: 10.1128/mcb.13.6.3675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Sadowski I., Ma J., Triezenberg S., Ptashne M. GAL4-VP16 is an unusually potent transcriptional activator. Nature. 1988 Oct 6;335(6190):563–564. doi: 10.1038/335563a0. [DOI] [PubMed] [Google Scholar]
  35. Sarapura V. D., Wood W. M., Gordon D. F., Ocran K. W., Kao M. Y., Ridgway E. C. Thyrotrope expression and thyroid hormone inhibition map to different regions of the mouse glycoprotein hormone alpha-subunit gene promoter. Endocrinology. 1990 Sep;127(3):1352–1361. doi: 10.1210/endo-127-3-1352. [DOI] [PubMed] [Google Scholar]
  36. Tone Y., Collingwood T. N., Adams M., Chatterjee V. K. Functional analysis of a transactivation domain in the thyroid hormone beta receptor. J Biol Chem. 1994 Dec 9;269(49):31157–31161. [PubMed] [Google Scholar]
  37. Wondisford F. E., Steinfelder H. J., Nations M., Radovick S. AP-1 antagonizes thyroid hormone receptor action on the thyrotropin beta-subunit gene. J Biol Chem. 1993 Feb 5;268(4):2749–2754. [PubMed] [Google Scholar]
  38. Zenke M., Muñoz A., Sap J., Vennström B., Beug H. v-erbA oncogene activation entails the loss of hormone-dependent regulator activity of c-erbA. Cell. 1990 Jun 15;61(6):1035–1049. doi: 10.1016/0092-8674(90)90068-p. [DOI] [PubMed] [Google Scholar]
  39. de Wet J. R., Wood K. V., DeLuca M., Helinski D. R., Subramani S. Firefly luciferase gene: structure and expression in mammalian cells. Mol Cell Biol. 1987 Feb;7(2):725–737. doi: 10.1128/mcb.7.2.725. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES