Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1997 May;17(5):2781–2789. doi: 10.1128/mcb.17.5.2781

Reversible activation of mouse metal response element-binding transcription factor 1 DNA binding involves zinc interaction with the zinc finger domain.

T P Dalton 1, D Bittel 1, G K Andrews 1
PMCID: PMC232129  PMID: 9111349

Abstract

The DNA-binding activity of the Zn finger protein metal response element-binding transcription factor 1 (MTF-1) was rapidly induced both in vivo in mouse Hepa cells, canine MDCK, and human HeLa cells after incubation in medium containing zinc and in vitro in whole-cell extracts to which zinc was added. Acquisition of DNA-binding capacity in the presence of free zinc was temperature and time dependent and did not occur at 4 degrees C. In contrast, activated MTF-1 binding to the metal response element occurred at 4 degrees C. After Zn activation, mouse MTF-1 binding activity was more sensitive to EDTA and was stabilized by DNA binding relative to the Zn finger transcription factor Sp1. After dilution of nuclear or whole-cell extracts from Zn-treated cells and incubation at 37 degrees C, mouse MTF-1 DNA-binding activity was no longer detected but could be completely reconstituted by the subsequent readdition of zinc. In vitro-synthesized, recombinant mouse MTF-1 displayed a similar, reversible temperature- and Zn-dependent activation of DNA-binding activity. Analysis of deletion mutants of recombinant MTF-1 suggests that the Zn finger domain is important for the Zn-dependent activation of DNA-binding capacity. Thus, mouse MTF-1 functions as a reversibly activated sensor of free zinc pools in the cell.

Full Text

The Full Text of this article is available as a PDF (1.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrews G. K. Regulation of metallothionein gene expression. Prog Food Nutr Sci. 1990;14(2-3):193–258. [PubMed] [Google Scholar]
  2. Beato M. Transcriptional control by nuclear receptors. FASEB J. 1991 Apr;5(7):2044–2051. doi: 10.1096/fasebj.5.7.2010057. [DOI] [PubMed] [Google Scholar]
  3. Briggs M. R., Kadonaga J. T., Bell S. P., Tjian R. Purification and biochemical characterization of the promoter-specific transcription factor, Sp1. Science. 1986 Oct 3;234(4772):47–52. doi: 10.1126/science.3529394. [DOI] [PubMed] [Google Scholar]
  4. Brugnera E., Georgiev O., Radtke F., Heuchel R., Baker E., Sutherland G. R., Schaffner W. Cloning, chromosomal mapping and characterization of the human metal-regulatory transcription factor MTF-1. Nucleic Acids Res. 1994 Aug 11;22(15):3167–3173. doi: 10.1093/nar/22.15.3167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Culotta V. C., Hamer D. H. Fine mapping of a mouse metallothionein gene metal response element. Mol Cell Biol. 1989 Mar;9(3):1376–1380. doi: 10.1128/mcb.9.3.1376. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dalton T. P., Li Q., Bittel D., Liang L., Andrews G. K. Oxidative stress activates metal-responsive transcription factor-1 binding activity. Occupancy in vivo of metal response elements in the metallothionein-I gene promoter. J Biol Chem. 1996 Oct 18;271(42):26233–26241. doi: 10.1074/jbc.271.42.26233. [DOI] [PubMed] [Google Scholar]
  7. Dalton T., Fu K., Palmiter R. D., Andrews G. K. Transgenic mice that overexpress metallothionein-I resist dietary zinc deficiency. J Nutr. 1996 Apr;126(4):825–833. doi: 10.1093/jn/126.4.825. [DOI] [PubMed] [Google Scholar]
  8. Dalton T., Palmiter R. D., Andrews G. K. Transcriptional induction of the mouse metallothionein-I gene in hydrogen peroxide-treated Hepa cells involves a composite major late transcription factor/antioxidant response element and metal response promoter elements. Nucleic Acids Res. 1994 Nov 25;22(23):5016–5023. doi: 10.1093/nar/22.23.5016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dameron C. T., Winge D. R., George G. N., Sansone M., Hu S., Hamer D. A copper-thiolate polynuclear cluster in the ACE1 transcription factor. Proc Natl Acad Sci U S A. 1991 Jul 15;88(14):6127–6131. doi: 10.1073/pnas.88.14.6127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dignam J. D., Lebovitz R. M., Roeder R. G. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 1983 Mar 11;11(5):1475–1489. doi: 10.1093/nar/11.5.1475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fried M. G. Measurement of protein-DNA interaction parameters by electrophoresis mobility shift assay. Electrophoresis. 1989 May-Jun;10(5-6):366–376. doi: 10.1002/elps.1150100515. [DOI] [PubMed] [Google Scholar]
  12. Fürst P., Hamer D. Cooperative activation of a eukaryotic transcription factor: interaction between Cu(I) and yeast ACE1 protein. Proc Natl Acad Sci U S A. 1989 Jul;86(14):5267–5271. doi: 10.1073/pnas.86.14.5267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Heuchel R., Radtke F., Georgiev O., Stark G., Aguet M., Schaffner W. The transcription factor MTF-1 is essential for basal and heavy metal-induced metallothionein gene expression. EMBO J. 1994 Jun 15;13(12):2870–2875. doi: 10.1002/j.1460-2075.1994.tb06581.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kadonaga J. T., Courey A. J., Ladika J., Tjian R. Distinct regions of Sp1 modulate DNA binding and transcriptional activation. Science. 1988 Dec 16;242(4885):1566–1570. doi: 10.1126/science.3059495. [DOI] [PubMed] [Google Scholar]
  15. Koizumi S., Yamada H., Suzuki K., Otsuka F. Zinc-specific activation of a HeLa cell nuclear protein which interacts with a metal responsive element of the human metallothionein-IIA gene. Eur J Biochem. 1992 Dec 1;210(2):555–560. doi: 10.1111/j.1432-1033.1992.tb17454.x. [DOI] [PubMed] [Google Scholar]
  16. Kägi J. H. Overview of metallothionein. Methods Enzymol. 1991;205:613–626. doi: 10.1016/0076-6879(91)05145-l. [DOI] [PubMed] [Google Scholar]
  17. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  18. Lazo J. S., Kondo Y., Dellapiazza D., Michalska A. E., Choo K. H., Pitt B. R. Enhanced sensitivity to oxidative stress in cultured embryonic cells from transgenic mice deficient in metallothionein I and II genes. J Biol Chem. 1995 Mar 10;270(10):5506–5510. doi: 10.1074/jbc.270.10.5506. [DOI] [PubMed] [Google Scholar]
  19. Lee D. K., Fu K., Liang L., Dalton T., Palmiter R. D., Andrews G. K. Transgenic mouse blastocysts that overexpress metallothionein-I resist cadmium toxicity in vitro. Mol Reprod Dev. 1996 Feb;43(2):158–166. doi: 10.1002/(SICI)1098-2795(199602)43:2<158::AID-MRD4>3.0.CO;2-Q. [DOI] [PubMed] [Google Scholar]
  20. Masters B. A., Kelly E. J., Quaife C. J., Brinster R. L., Palmiter R. D. Targeted disruption of metallothionein I and II genes increases sensitivity to cadmium. Proc Natl Acad Sci U S A. 1994 Jan 18;91(2):584–588. doi: 10.1073/pnas.91.2.584. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Michalska A. E., Choo K. H. Targeting and germ-line transmission of a null mutation at the metallothionein I and II loci in mouse. Proc Natl Acad Sci U S A. 1993 Sep 1;90(17):8088–8092. doi: 10.1073/pnas.90.17.8088. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Mueller P. R., Salser S. J., Wold B. Constitutive and metal-inducible protein:DNA interactions at the mouse metallothionein I promoter examined by in vivo and in vitro footprinting. Genes Dev. 1988 Apr;2(4):412–427. doi: 10.1101/gad.2.4.412. [DOI] [PubMed] [Google Scholar]
  23. Müller H. P., Brungnera E., Georgiev O., Badzong M., Müller K. H., Schaffner W. Analysis of the heavy metal-responsive transcription factor MTF-1 from human and mouse. Somat Cell Mol Genet. 1995 Sep;21(5):289–297. doi: 10.1007/BF02257464. [DOI] [PubMed] [Google Scholar]
  24. Otsuka F., Iwamatsu A., Suzuki K., Ohsawa M., Hamer D. H., Koizumi S. Purification and characterization of a protein that binds to metal responsive elements of the human metallothionein IIA gene. J Biol Chem. 1994 Sep 23;269(38):23700–23707. [PubMed] [Google Scholar]
  25. Palmiter R. D., Cole T. B., Findley S. D. ZnT-2, a mammalian protein that confers resistance to zinc by facilitating vesicular sequestration. EMBO J. 1996 Apr 15;15(8):1784–1791. [PMC free article] [PubMed] [Google Scholar]
  26. Palmiter R. D., Findley S. D. Cloning and functional characterization of a mammalian zinc transporter that confers resistance to zinc. EMBO J. 1995 Feb 15;14(4):639–649. doi: 10.1002/j.1460-2075.1995.tb07042.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Palmiter R. D. Regulation of metallothionein genes by heavy metals appears to be mediated by a zinc-sensitive inhibitor that interacts with a constitutively active transcription factor, MTF-1. Proc Natl Acad Sci U S A. 1994 Feb 15;91(4):1219–1223. doi: 10.1073/pnas.91.4.1219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Radtke F., Georgiev O., Müller H. P., Brugnera E., Schaffner W. Functional domains of the heavy metal-responsive transcription regulator MTF-1. Nucleic Acids Res. 1995 Jun 25;23(12):2277–2286. doi: 10.1093/nar/23.12.2277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Radtke F., Heuchel R., Georgiev O., Hergersberg M., Gariglio M., Dembic Z., Schaffner W. Cloned transcription factor MTF-1 activates the mouse metallothionein I promoter. EMBO J. 1993 Apr;12(4):1355–1362. doi: 10.1002/j.1460-2075.1993.tb05780.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Stuart G. W., Searle P. F., Chen H. Y., Brinster R. L., Palmiter R. D. A 12-base-pair DNA motif that is repeated several times in metallothionein gene promoters confers metal regulation to a heterologous gene. Proc Natl Acad Sci U S A. 1984 Dec;81(23):7318–7322. doi: 10.1073/pnas.81.23.7318. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Stuart G. W., Searle P. F., Palmiter R. D. Identification of multiple metal regulatory elements in mouse metallothionein-I promoter by assaying synthetic sequences. 1985 Oct 31-Nov 6Nature. 317(6040):828–831. doi: 10.1038/317828a0. [DOI] [PubMed] [Google Scholar]
  32. Westin G., Schaffner W. A zinc-responsive factor interacts with a metal-regulated enhancer element (MRE) of the mouse metallothionein-I gene. EMBO J. 1988 Dec 1;7(12):3763–3770. doi: 10.1002/j.1460-2075.1988.tb03260.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Zhou P., Szczypka M. S., Sosinowski T., Thiele D. J. Expression of a yeast metallothionein gene family is activated by a single metalloregulatory transcription factor. Mol Cell Biol. 1992 Sep;12(9):3766–3775. doi: 10.1128/mcb.12.9.3766. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Zimarino V., Wu C. Induction of sequence-specific binding of Drosophila heat shock activator protein without protein synthesis. 1987 Jun 25-Jul 1Nature. 327(6124):727–730. doi: 10.1038/327727a0. [DOI] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES