Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1997 May;17(5):2908–2919. doi: 10.1128/mcb.17.5.2908

Evolutionary conservation of regulatory strategies for the sex determination factor transformer-2.

D Chandler 1, M E McGuffin 1, J Piskur 1, J Yao 1, B S Baker 1, W Mattox 1
PMCID: PMC232143  PMID: 9111363

Abstract

Sex determination in Drosophila melanogaster is regulated by a cascade of splicing factors which direct the sex-specific expression of gene products needed for male and female differentiation. The splicing factor TRA-2 affects sex-specific splicing of multiple pre-mRNAs involved in sexual differentiation. The tra-2 gene itself expresses a complex set of mRNAs generated through alternative processing that collectively encode three distinct protein isoforms. The expression of these isoforms differs in the soma and germ line. In the male germ line the ratio of two isoforms present is governed by autoregulation of splicing. However, the functional significance of multiple TRA-2 isoforms has remained uncertain. Here we have examined whether the structure, function, and regulation of tra-2 are conserved in Drosophila virilis, a species diverged from D. melanogaster by over 60 million years. We find that the D. virilis homolog of tra-2 produces alternatively spliced RNAs encoding a set of protein isoforms analogous to those found in D. melanogaster. When introduced into the genome of D. melanogaster, this homolog can functionally replace the endogenous tra-2 gene for both normal female sexual differentiation and spermatogenesis. Examination of alternative mRNAs produced in D. virilis testes suggests that germ line-specific autoregulation of tra-2 function is accomplished by a strategy similar to that used in D. melanogaster. The similarity in structure and function of the tra-2 genes in these divergent Drosophila species supports the idea that sexual differentiation in D. melanogaster and D. virilis is accomplished under the control of similar regulatory pathways.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amrein H., Hedley M. L., Maniatis T. The role of specific protein-RNA and protein-protein interactions in positive and negative control of pre-mRNA splicing by Transformer 2. Cell. 1994 Feb 25;76(4):735–746. doi: 10.1016/0092-8674(94)90512-6. [DOI] [PubMed] [Google Scholar]
  2. Amrein H., Maniatis T., Nöthiger R. Alternatively spliced transcripts of the sex-determining gene tra-2 of Drosophila encode functional proteins of different size. EMBO J. 1990 Nov;9(11):3619–3629. doi: 10.1002/j.1460-2075.1990.tb07573.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baker B. S., Ridge K. A. Sex and the single cell. I. On the action of major loci affecting sex determination in Drosophila melanogaster. Genetics. 1980 Feb;94(2):383–423. doi: 10.1093/genetics/94.2.383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Baker B. S., Wolfner M. F. A molecular analysis of doublesex, a bifunctional gene that controls both male and female sexual differentiation in Drosophila melanogaster. Genes Dev. 1988 Apr;2(4):477–489. doi: 10.1101/gad.2.4.477. [DOI] [PubMed] [Google Scholar]
  5. Bell L. R., Maine E. M., Schedl P., Cline T. W. Sex-lethal, a Drosophila sex determination switch gene, exhibits sex-specific RNA splicing and sequence similarity to RNA binding proteins. Cell. 1988 Dec 23;55(6):1037–1046. doi: 10.1016/0092-8674(88)90248-6. [DOI] [PubMed] [Google Scholar]
  6. Belote J. M., Baker B. S. The dual functions of a sex determination gene in Drosophila melanogaster. Dev Biol. 1983 Feb;95(2):512–517. doi: 10.1016/0012-1606(83)90054-4. [DOI] [PubMed] [Google Scholar]
  7. Bernstein S. I., Hansen C. J., Becker K. D., Wassenberg D. R., 2nd, Roche E. S., Donady J. J., Emerson C. P., Jr Alternative RNA splicing generates transcripts encoding a thorax-specific isoform of Drosophila melanogaster myosin heavy chain. Mol Cell Biol. 1986 Jul;6(7):2511–2519. doi: 10.1128/mcb.6.7.2511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bopp D., Calhoun G., Horabin J. I., Samuels M., Schedl P. Sex-specific control of Sex-lethal is a conserved mechanism for sex determination in the genus Drosophila. Development. 1996 Mar;122(3):971–982. doi: 10.1242/dev.122.3.971. [DOI] [PubMed] [Google Scholar]
  9. Burtis K. C., Baker B. S. Drosophila doublesex gene controls somatic sexual differentiation by producing alternatively spliced mRNAs encoding related sex-specific polypeptides. Cell. 1989 Mar 24;56(6):997–1010. doi: 10.1016/0092-8674(89)90633-8. [DOI] [PubMed] [Google Scholar]
  10. Burtis K. C., Coschigano K. T., Baker B. S., Wensink P. C. The doublesex proteins of Drosophila melanogaster bind directly to a sex-specific yolk protein gene enhancer. EMBO J. 1991 Sep;10(9):2577–2582. doi: 10.1002/j.1460-2075.1991.tb07798.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Cooper T. A., Ordahl C. P. Nucleotide substitutions within the cardiac troponin T alternative exon disrupt pre-mRNA alternative splicing. Nucleic Acids Res. 1989 Oct 11;17(19):7905–7921. doi: 10.1093/nar/17.19.7905. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Coschigano K. T., Wensink P. C. Sex-specific transcriptional regulation by the male and female doublesex proteins of Drosophila. Genes Dev. 1993 Jan;7(1):42–54. doi: 10.1101/gad.7.1.42. [DOI] [PubMed] [Google Scholar]
  13. Dauwalder B., Amaya-Manzanares F., Mattox W. A human homologue of the Drosophila sex determination factor transformer-2 has conserved splicing regulatory functions. Proc Natl Acad Sci U S A. 1996 Aug 20;93(17):9004–9009. doi: 10.1073/pnas.93.17.9004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Diamond R. H., Du K., Lee V. M., Mohn K. L., Haber B. A., Tewari D. S., Taub R. Novel delayed-early and highly insulin-induced growth response genes. Identification of HRS, a potential regulator of alternative pre-mRNA splicing. J Biol Chem. 1993 Jul 15;268(20):15185–15192. [PubMed] [Google Scholar]
  15. Falkenthal S., Parker V. P., Davidson N. Developmental variations in the splicing pattern of transcripts from the Drosophila gene encoding myosin alkali light chain result in different carboxyl-terminal amino acid sequences. Proc Natl Acad Sci U S A. 1985 Jan;82(2):449–453. doi: 10.1073/pnas.82.2.449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Fu X. D. The superfamily of arginine/serine-rich splicing factors. RNA. 1995 Sep;1(7):663–680. [PMC free article] [PubMed] [Google Scholar]
  17. Gailey D. A., Hall J. C. Behavior and cytogenetics of fruitless in Drosophila melanogaster: different courtship defects caused by separate, closely linked lesions. Genetics. 1989 Apr;121(4):773–785. doi: 10.1093/genetics/121.4.773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Gailey D. A., Taylor B. J., Hall J. C. Elements of the fruitless locus regulate development of the muscle of Lawrence, a male-specific structure in the abdomen of Drosophila melanogaster adults. Development. 1991 Nov;113(3):879–890. doi: 10.1242/dev.113.3.879. [DOI] [PubMed] [Google Scholar]
  19. Goralski T. J., Edström J. E., Baker B. S. The sex determination locus transformer-2 of Drosophila encodes a polypeptide with similarity to RNA binding proteins. Cell. 1989 Mar 24;56(6):1011–1018. doi: 10.1016/0092-8674(89)90634-x. [DOI] [PubMed] [Google Scholar]
  20. HIROYOSHI T. SEX-LIMITED INHERITANCE AND ABNORMAL SEX RATIO IN STRAINS OF THE HOUSEFLY. Genetics. 1964 Sep;50:373–385. doi: 10.1093/genetics/50.3.373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hazelrigg T., Tu C. Sex-specific processing of the Drosophila exuperantia transcript is regulated in male germ cells by the tra-2 gene. Proc Natl Acad Sci U S A. 1994 Oct 25;91(22):10752–10756. doi: 10.1073/pnas.91.22.10752. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Hedley M. L., Maniatis T. Sex-specific splicing and polyadenylation of dsx pre-mRNA requires a sequence that binds specifically to tra-2 protein in vitro. Cell. 1991 May 17;65(4):579–586. doi: 10.1016/0092-8674(91)90090-l. [DOI] [PubMed] [Google Scholar]
  23. Heinrichs V., Baker B. S. The Drosophila SR protein RBP1 contributes to the regulation of doublesex alternative splicing by recognizing RBP1 RNA target sequences. EMBO J. 1995 Aug 15;14(16):3987–4000. doi: 10.1002/j.1460-2075.1995.tb00070.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Hodgkin J. Genetic sex determination mechanisms and evolution. Bioessays. 1992 Apr;14(4):253–261. doi: 10.1002/bies.950140409. [DOI] [PubMed] [Google Scholar]
  25. Konig H., Moll J., Ponta H., Herrlich P. Trans-acting factors regulate the expression of CD44 splice variants. EMBO J. 1996 Aug 1;15(15):4030–4039. [PMC free article] [PubMed] [Google Scholar]
  26. Lynch K. W., Maniatis T. Synergistic interactions between two distinct elements of a regulated splicing enhancer. Genes Dev. 1995 Feb 1;9(3):284–293. doi: 10.1101/gad.9.3.284. [DOI] [PubMed] [Google Scholar]
  27. Madigan S. J., Edeen P., Esnayra J., McKeown M. att, a target for regulation by tra2 in the testes of Drosophila melanogaster, encodes alternative RNAs and alternative proteins. Mol Cell Biol. 1996 Aug;16(8):4222–4230. doi: 10.1128/mcb.16.8.4222. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Manley J. L., Tacke R. SR proteins and splicing control. Genes Dev. 1996 Jul 1;10(13):1569–1579. doi: 10.1101/gad.10.13.1569. [DOI] [PubMed] [Google Scholar]
  29. Matsuo N., Ogawa S., Imai Y., Takagi T., Tohyama M., Stern D., Wanaka A. Cloning of a novel RNA binding polypeptide (RA301) induced by hypoxia/reoxygenation. J Biol Chem. 1995 Nov 24;270(47):28216–28222. doi: 10.1074/jbc.270.47.28216. [DOI] [PubMed] [Google Scholar]
  30. Mattox W., Baker B. S. Autoregulation of the splicing of transcripts from the transformer-2 gene of Drosophila. Genes Dev. 1991 May;5(5):786–796. doi: 10.1101/gad.5.5.786. [DOI] [PubMed] [Google Scholar]
  31. Mattox W., McGuffin M. E., Baker B. S. A negative feedback mechanism revealed by functional analysis of the alternative isoforms of the Drosophila splicing regulator transformer-2. Genetics. 1996 May;143(1):303–314. doi: 10.1093/genetics/143.1.303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Mattox W., Palmer M. J., Baker B. S. Alternative splicing of the sex determination gene transformer-2 is sex-specific in the germ line but not in the soma. Genes Dev. 1990 May;4(5):789–805. doi: 10.1101/gad.4.5.789. [DOI] [PubMed] [Google Scholar]
  33. McKeown M., Belote J. M., Boggs R. T. Ectopic expression of the female transformer gene product leads to female differentiation of chromosomally male Drosophila. Cell. 1988 Jun 17;53(6):887–895. doi: 10.1016/s0092-8674(88)90369-8. [DOI] [PubMed] [Google Scholar]
  34. Nagoshi R. N., McKeown M., Burtis K. C., Belote J. M., Baker B. S. The control of alternative splicing at genes regulating sexual differentiation in D. melanogaster. Cell. 1988 Apr 22;53(2):229–236. doi: 10.1016/0092-8674(88)90384-4. [DOI] [PubMed] [Google Scholar]
  35. O'Neil M. T., Belote J. M. Interspecific comparison of the transformer gene of Drosophila reveals an unusually high degree of evolutionary divergence. Genetics. 1992 May;131(1):113–128. doi: 10.1093/genetics/131.1.113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Oubridge C., Ito N., Evans P. R., Teo C. H., Nagai K. Crystal structure at 1.92 A resolution of the RNA-binding domain of the U1A spliceosomal protein complexed with an RNA hairpin. Nature. 1994 Dec 1;372(6505):432–438. doi: 10.1038/372432a0. [DOI] [PubMed] [Google Scholar]
  37. Pirrotta V. Vectors for P-mediated transformation in Drosophila. Biotechnology. 1988;10:437–456. doi: 10.1016/b978-0-409-90042-2.50028-3. [DOI] [PubMed] [Google Scholar]
  38. Query C. C., Bentley R. C., Keene J. D. A common RNA recognition motif identified within a defined U1 RNA binding domain of the 70K U1 snRNP protein. Cell. 1989 Apr 7;57(1):89–101. doi: 10.1016/0092-8674(89)90175-x. [DOI] [PubMed] [Google Scholar]
  39. Query C. C., Bentley R. C., Keene J. D. A specific 31-nucleotide domain of U1 RNA directly interacts with the 70K small nuclear ribonucleoprotein component. Mol Cell Biol. 1989 Nov;9(11):4872–4881. doi: 10.1128/mcb.9.11.4872. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Rozek C. E., Davidson N. Drosophila has one myosin heavy-chain gene with three developmentally regulated transcripts. Cell. 1983 Jan;32(1):23–34. doi: 10.1016/0092-8674(83)90493-2. [DOI] [PubMed] [Google Scholar]
  41. Ryner L. C., Goodwin S. F., Castrillon D. H., Anand A., Villella A., Baker B. S., Hall J. C., Taylor B. J., Wasserman S. A. Control of male sexual behavior and sexual orientation in Drosophila by the fruitless gene. Cell. 1996 Dec 13;87(6):1079–1089. doi: 10.1016/s0092-8674(00)81802-4. [DOI] [PubMed] [Google Scholar]
  42. Ryner L. C., Swain A. Sex in the '90s. Cell. 1995 May 19;81(4):483–493. doi: 10.1016/0092-8674(95)90069-1. [DOI] [PubMed] [Google Scholar]
  43. Screaton G. R., Cáceres J. F., Mayeda A., Bell M. V., Plebanski M., Jackson D. G., Bell J. I., Krainer A. R. Identification and characterization of three members of the human SR family of pre-mRNA splicing factors. EMBO J. 1995 Sep 1;14(17):4336–4349. doi: 10.1002/j.1460-2075.1995.tb00108.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Segade F., Hurlé B., Claudio E., Ramos S., Lazo P. S. Molecular cloning of a mouse homologue for the Drosophila splicing regulator Tra2. FEBS Lett. 1996 Jun 3;387(2-3):152–156. doi: 10.1016/0014-5793(96)00496-6. [DOI] [PubMed] [Google Scholar]
  45. Sosnowski B. A., Davis D. D., Boggs R. T., Madigan S. J., McKeown M. Multiple portions of a small region of the Drosophila transformer gene are required for efficient in vivo sex-specific regulated RNA splicing and in vitro sex-lethal binding. Dev Biol. 1994 Jan;161(1):302–312. doi: 10.1006/dbio.1994.1030. [DOI] [PubMed] [Google Scholar]
  46. Taylor B. J., Villella A., Ryner L. C., Baker B. S., Hall J. C. Behavioral and neurobiological implications of sex-determining factors in Drosophila. Dev Genet. 1994;15(3):275–296. doi: 10.1002/dvg.1020150309. [DOI] [PubMed] [Google Scholar]
  47. Tian M., Maniatis T. A splicing enhancer complex controls alternative splicing of doublesex pre-mRNA. Cell. 1993 Jul 16;74(1):105–114. doi: 10.1016/0092-8674(93)90298-5. [DOI] [PubMed] [Google Scholar]
  48. Tian M., Maniatis T. Positive control of pre-mRNA splicing in vitro. Science. 1992 Apr 10;256(5054):237–240. doi: 10.1126/science.1566072. [DOI] [PubMed] [Google Scholar]
  49. Whiting J. H., Jr, Pliley M. D., Farmer J. L., Jeffery D. E. In situ hybridization analysis of chromosomal homologies in Drosophila melanogaster and Drosophila virilis. Genetics. 1989 May;122(1):99–109. doi: 10.1093/genetics/122.1.99. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Wilkins A. S. Moving up the hierarchy: a hypothesis on the evolution of a genetic sex determination pathway. Bioessays. 1995 Jan;17(1):71–77. doi: 10.1002/bies.950170113. [DOI] [PubMed] [Google Scholar]
  51. Yeakley J. M., Morfin J. P., Rosenfeld M. G., Fu X. D. A complex of nuclear proteins mediates SR protein binding to a purine-rich splicing enhancer. Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):7582–7587. doi: 10.1073/pnas.93.15.7582. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Zuo P., Maniatis T. The splicing factor U2AF35 mediates critical protein-protein interactions in constitutive and enhancer-dependent splicing. Genes Dev. 1996 Jun 1;10(11):1356–1368. doi: 10.1101/gad.10.11.1356. [DOI] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES