Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1997 Jun;17(6):3056–3064. doi: 10.1128/mcb.17.6.3056

Regulation of K3 keratin gene transcription by Sp1 and AP-2 in differentiating rabbit corneal epithelial cells.

T T Chen 1, R L Wu 1, F Castro-Munozledo 1, T T Sun 1
PMCID: PMC232158  PMID: 9154804

Abstract

Rabbit corneal epithelial cells cultured in the presence of 3T3 feeder cells undergo biochemical differentiation, as evidenced by their initial expression of K5 and K14 keratins characteristic of basal keratinocytes, followed by the subsequent expression of K3 and K12 keratin markers of corneal epithelial differentiation. Previous data established that mutations of an Sp1 site in a DNA element, E, that contains overlapping Sp1 and AP-2 motifs reduce K3 gene promoter activity by 70% in transfection assays. We show here that Sp1 activates while AP-2 represses the K3 promoter. Although undifferentiated corneal epithelial basal cells express equal amounts of Sp1 and AP-2 DNA-binding activities, the differentiated cells down-regulate their Sp1 activity slightly but their AP-2 activity drastically, thus resulting in a six- to sevenfold increase in the Sp1/AP-2 ratio. This change coincides with the activation and suppression of the differentiation-related K3 gene and the basal cell-related K14 keratin gene, respectively. In addition, we show that polyamines, which are present in a high concentration in proliferating basal keratinocytes, can inhibit the binding of Sp1 to its cognate binding motif but not that of AP-2. These results suggest that the relatively low Sp1/AP-2 ratio as well as the polyamine-mediated inhibition of Sp1 binding to the E motif may account, in part, for the suppression of the K3 gene in corneal epithelial basal cells, while the elevated Sp1/AP-2 ratio may be involved in activating the K3 gene in differentiated corneal epithelial cells. Coupled with the previous demonstration that AP-2 activates the K14 gene in basal cells, the switch of the Sp1/AP-2 ratio during corneal epithelial differentiation may play a role in the reciprocal expression of the K3 and K14 genes in the basal and suprabasal cell layers.

Full Text

The Full Text of this article is available as a PDF (538.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersen B., Schonemann M. D., Flynn S. E., Pearse R. V., 2nd, Singh H., Rosenfeld M. G. Skn-1a and Skn-1i: two functionally distinct Oct-2-related factors expressed in epidermis. Science. 1993 Apr 2;260(5104):78–82. doi: 10.1126/science.7682011. [DOI] [PubMed] [Google Scholar]
  2. Andersson G., Påhlman S., Parrow V., Johansson I., Hammerling U. Activation of the human NPY gene during neuroblastoma cell differentiation: induced transcriptional activities of AP-1 and AP-2. Cell Growth Differ. 1994 Jan;5(1):27–36. [PubMed] [Google Scholar]
  3. Baze P. E., Milano G., Verrando P., Renee N., Ortonne J. P. Distribution of polyamines in human epidermis. Br J Dermatol. 1985 Apr;112(4):393–396. doi: 10.1111/j.1365-2133.1985.tb02311.x. [DOI] [PubMed] [Google Scholar]
  4. Bousset K., Henriksson M., Lüscher-Firzlaff J. M., Litchfield D. W., Lüscher B. Identification of casein kinase II phosphorylation sites in Max: effects on DNA-binding kinetics of Max homo- and Myc/Max heterodimers. Oncogene. 1993 Dec;8(12):3211–3220. [PubMed] [Google Scholar]
  5. Buettner R., Kannan P., Imhof A., Bauer R., Yim S. O., Glockshuber R., Van Dyke M. W., Tainsky M. A. An alternatively spliced mRNA from the AP-2 gene encodes a negative regulator of transcriptional activation by AP-2. Mol Cell Biol. 1993 Jul;13(7):4174–4185. doi: 10.1128/mcb.13.7.4174. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Byrne C., Fuchs E. Probing keratinocyte and differentiation specificity of the human K5 promoter in vitro and in transgenic mice. Mol Cell Biol. 1993 Jun;13(6):3176–3190. doi: 10.1128/mcb.13.6.3176. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Byrne C., Tainsky M., Fuchs E. Programming gene expression in developing epidermis. Development. 1994 Sep;120(9):2369–2383. doi: 10.1242/dev.120.9.2369. [DOI] [PubMed] [Google Scholar]
  8. Casatorres J., Navarro J. M., Blessing M., Jorcano J. L. Analysis of the control of expression and tissue specificity of the keratin 5 gene, characteristic of basal keratinocytes. Fundamental role of an AP-1 element. J Biol Chem. 1994 Aug 12;269(32):20489–20496. [PubMed] [Google Scholar]
  9. Castro-Muñozledo F. Development of a spontaneous permanent cell line of rabbit corneal epithelial cells that undergoes sequential stages of differentiation in cell culture. J Cell Sci. 1994 Aug;107(Pt 8):2343–2351. doi: 10.1242/jcs.107.8.2343. [DOI] [PubMed] [Google Scholar]
  10. Chen C., Okayama H. High-efficiency transformation of mammalian cells by plasmid DNA. Mol Cell Biol. 1987 Aug;7(8):2745–2752. doi: 10.1128/mcb.7.8.2745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Chen L. I., Nishinaka T., Kwan K., Kitabayashi I., Yokoyama K., Fu Y. H., Grünwald S., Chiu R. The retinoblastoma gene product RB stimulates Sp1-mediated transcription by liberating Sp1 from a negative regulator. Mol Cell Biol. 1994 Jul;14(7):4380–4389. doi: 10.1128/mcb.14.7.4380. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Clark L., Matthews J. R., Hay R. T. Interaction of enhancer-binding protein EBP1 (NF-kappa B) with the human immunodeficiency virus type 1 enhancer. J Virol. 1990 Mar;64(3):1335–1344. doi: 10.1128/jvi.64.3.1335-1344.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Cotsarelis G., Cheng S. Z., Dong G., Sun T. T., Lavker R. M. Existence of slow-cycling limbal epithelial basal cells that can be preferentially stimulated to proliferate: implications on epithelial stem cells. Cell. 1989 Apr 21;57(2):201–209. doi: 10.1016/0092-8674(89)90958-6. [DOI] [PubMed] [Google Scholar]
  14. Datta P. K., Raychaudhuri P., Bagchi S. Association of p107 with Sp1: genetically separable regions of p107 are involved in regulation of E2F- and Sp1-dependent transcription. Mol Cell Biol. 1995 Oct;15(10):5444–5452. doi: 10.1128/mcb.15.10.5444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Davis R. H., Morris D. R., Coffino P. Sequestered end products and enzyme regulation: the case of ornithine decarboxylase. Microbiol Rev. 1992 Jun;56(2):280–290. doi: 10.1128/mr.56.2.280-290.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Deng W. P., Nickoloff J. A. Site-directed mutagenesis of virtually any plasmid by eliminating a unique site. Anal Biochem. 1992 Jan;200(1):81–88. doi: 10.1016/0003-2697(92)90280-k. [DOI] [PubMed] [Google Scholar]
  17. Dennig J., Hagen G., Beato M., Suske G. Members of the Sp transcription factor family control transcription from the uteroglobin promoter. J Biol Chem. 1995 May 26;270(21):12737–12744. doi: 10.1074/jbc.270.21.12737. [DOI] [PubMed] [Google Scholar]
  18. Drozdoff V., Pledger W. J. Commitment to differentiation and expression of early differentiation markers in murine keratinocytes in vitro are regulated independently of extracellular calcium concentrations. J Cell Biol. 1993 Nov;123(4):909–919. doi: 10.1083/jcb.123.4.909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Faus I., Hsu H. J., Fuchs E. Oct-6: a regulator of keratinocyte gene expression in stratified squamous epithelia. Mol Cell Biol. 1994 May;14(5):3263–3275. doi: 10.1128/mcb.14.5.3263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Fuchs E., Weber K. Intermediate filaments: structure, dynamics, function, and disease. Annu Rev Biochem. 1994;63:345–382. doi: 10.1146/annurev.bi.63.070194.002021. [DOI] [PubMed] [Google Scholar]
  21. Gaubatz S., Imhof A., Dosch R., Werner O., Mitchell P., Buettner R., Eilers M. Transcriptional activation by Myc is under negative control by the transcription factor AP-2. EMBO J. 1995 Apr 3;14(7):1508–1519. doi: 10.1002/j.1460-2075.1995.tb07137.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Getman D. K., Mutero A., Inoue K., Taylor P. Transcription factor repression and activation of the human acetylcholinesterase gene. J Biol Chem. 1995 Oct 6;270(40):23511–23519. doi: 10.1074/jbc.270.40.23511. [DOI] [PubMed] [Google Scholar]
  23. Green H. Terminal differentiation of cultured human epidermal cells. Cell. 1977 Jun;11(2):405–416. doi: 10.1016/0092-8674(77)90058-7. [DOI] [PubMed] [Google Scholar]
  24. Hagen G., Müller S., Beato M., Suske G. Sp1-mediated transcriptional activation is repressed by Sp3. EMBO J. 1994 Aug 15;13(16):3843–3851. doi: 10.1002/j.1460-2075.1994.tb06695.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Hasan R., Alam M. K., Ali R. Polyamine induced Z-conformation of native calf thymus DNA. FEBS Lett. 1995 Jul 10;368(1):27–30. doi: 10.1016/0014-5793(95)00591-v. [DOI] [PubMed] [Google Scholar]
  26. Hu L., Gudas L. J. Activation of keratin 19 gene expression by a 3' enhancer containing an AP1 site. J Biol Chem. 1994 Jan 7;269(1):183–191. [PubMed] [Google Scholar]
  27. Huff C. A., Yuspa S. H., Rosenthal D. Identification of control elements 3' to the human keratin 1 gene that regulate cell type and differentiation-specific expression. J Biol Chem. 1993 Jan 5;268(1):377–384. [PubMed] [Google Scholar]
  28. Imagawa M., Chiu R., Karin M. Transcription factor AP-2 mediates induction by two different signal-transduction pathways: protein kinase C and cAMP. Cell. 1987 Oct 23;51(2):251–260. doi: 10.1016/0092-8674(87)90152-8. [DOI] [PubMed] [Google Scholar]
  29. Kadonaga J. T., Carner K. R., Masiarz F. R., Tjian R. Isolation of cDNA encoding transcription factor Sp1 and functional analysis of the DNA binding domain. Cell. 1987 Dec 24;51(6):1079–1090. doi: 10.1016/0092-8674(87)90594-0. [DOI] [PubMed] [Google Scholar]
  30. Kadonaga J. T., Tjian R. Affinity purification of sequence-specific DNA binding proteins. Proc Natl Acad Sci U S A. 1986 Aug;83(16):5889–5893. doi: 10.1073/pnas.83.16.5889. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Kolega J., Manabe M., Sun T. T. Basement membrane heterogeneity and variation in corneal epithelial differentiation. Differentiation. 1989 Oct;42(1):54–63. doi: 10.1111/j.1432-0436.1989.tb00607.x. [DOI] [PubMed] [Google Scholar]
  32. Leask A., Byrne C., Fuchs E. Transcription factor AP2 and its role in epidermal-specific gene expression. Proc Natl Acad Sci U S A. 1991 Sep 15;88(18):7948–7952. doi: 10.1073/pnas.88.18.7948. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Leask A., Rosenberg M., Vassar R., Fuchs E. Regulation of a human epidermal keratin gene: sequences and nuclear factors involved in keratinocyte-specific transcription. Genes Dev. 1990 Nov;4(11):1985–1998. doi: 10.1101/gad.4.11.1985. [DOI] [PubMed] [Google Scholar]
  34. Leggett R. W., Armstrong S. A., Barry D., Mueller C. R. Sp1 is phosphorylated and its DNA binding activity down-regulated upon terminal differentiation of the liver. J Biol Chem. 1995 Oct 27;270(43):25879–25884. doi: 10.1074/jbc.270.43.25879. [DOI] [PubMed] [Google Scholar]
  35. Ljubimov A. V., Burgeson R. E., Butkowski R. J., Michael A. F., Sun T. T., Kenney M. C. Human corneal basement membrane heterogeneity: topographical differences in the expression of type IV collagen and laminin isoforms. Lab Invest. 1995 Apr;72(4):461–473. [PubMed] [Google Scholar]
  36. Lüscher B., Mitchell P. J., Williams T., Tjian R. Regulation of transcription factor AP-2 by the morphogen retinoic acid and by second messengers. Genes Dev. 1989 Oct;3(10):1507–1517. doi: 10.1101/gad.3.10.1507. [DOI] [PubMed] [Google Scholar]
  37. Moll R., Franke W. W., Schiller D. L., Geiger B., Krepler R. The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells. Cell. 1982 Nov;31(1):11–24. doi: 10.1016/0092-8674(82)90400-7. [DOI] [PubMed] [Google Scholar]
  38. Murata Y., Kim H. G., Rogers K. T., Udvadia A. J., Horowitz J. M. Negative regulation of Sp1 trans-activation is correlated with the binding of cellular proteins to the amino terminus of the Sp1 trans-activation domain. J Biol Chem. 1994 Aug 12;269(32):20674–20681. [PubMed] [Google Scholar]
  39. Navarro J. M., Casatorres J., Jorcano J. L. Elements controlling the expression and induction of the skin hyperproliferation-associated keratin K6. J Biol Chem. 1995 Sep 8;270(36):21362–21367. doi: 10.1074/jbc.270.36.21362. [DOI] [PubMed] [Google Scholar]
  40. Panagiotidis C. A., Artandi S., Calame K., Silverstein S. J. Polyamines alter sequence-specific DNA-protein interactions. Nucleic Acids Res. 1995 May 25;23(10):1800–1809. doi: 10.1093/nar/23.10.1800. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Pankov R., Neznanov N., Umezawa A., Oshima R. G. AP-1, ETS, and transcriptional silencers regulate retinoic acid-dependent induction of keratin 18 in embryonic cells. Mol Cell Biol. 1994 Dec;14(12):7744–7757. doi: 10.1128/mcb.14.12.7744. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Piette J., Hirai S., Yaniv M. Constitutive synthesis of activator protein 1 transcription factor after viral transformation of mouse fibroblasts. Proc Natl Acad Sci U S A. 1988 May;85(10):3401–3405. doi: 10.1073/pnas.85.10.3401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Prendergast G. C., Lawe D., Ziff E. B. Association of Myn, the murine homolog of max, with c-Myc stimulates methylation-sensitive DNA binding and ras cotransformation. Cell. 1991 May 3;65(3):395–407. doi: 10.1016/0092-8674(91)90457-a. [DOI] [PubMed] [Google Scholar]
  44. Rossi P., Karsenty G., Roberts A. B., Roche N. S., Sporn M. B., de Crombrugghe B. A nuclear factor 1 binding site mediates the transcriptional activation of a type I collagen promoter by transforming growth factor-beta. Cell. 1988 Feb 12;52(3):405–414. doi: 10.1016/s0092-8674(88)80033-3. [DOI] [PubMed] [Google Scholar]
  45. Rothnagel J. A., Greenhalgh D. A., Gagne T. A., Longley M. A., Roop D. R. Identification of a calcium-inducible, epidermal-specific regulatory element in the 3'-flanking region of the human keratin 1 gene. J Invest Dermatol. 1993 Oct;101(4):506–513. doi: 10.1111/1523-1747.ep12365886. [DOI] [PubMed] [Google Scholar]
  46. Schermer A., Galvin S., Sun T. T. Differentiation-related expression of a major 64K corneal keratin in vivo and in culture suggests limbal location of corneal epithelial stem cells. J Cell Biol. 1986 Jul;103(1):49–62. doi: 10.1083/jcb.103.1.49. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Schermer A., Jester J. V., Hardy C., Milano D., Sun T. T. Transient synthesis of K6 and K16 keratins in regenerating rabbit corneal epithelium: keratin markers for an alternative pathway of keratinocyte differentiation. Differentiation. 1989 Dec;42(2):103–110. doi: 10.1111/j.1432-0436.1989.tb00611.x. [DOI] [PubMed] [Google Scholar]
  48. Sun T. T., Tseng S. C., Huang A. J., Cooper D., Schermer A., Lynch M. H., Weiss R., Eichner R. Monoclonal antibody studies of mammalian epithelial keratins: a review. Ann N Y Acad Sci. 1985;455:307–329. doi: 10.1111/j.1749-6632.1985.tb50419.x. [DOI] [PubMed] [Google Scholar]
  49. Thomas T. J., Gunnia U. B., Thomas T. Polyamine-induced B-DNA to Z-DNA conformational transition of a plasmid DNA with (dG-dC)n insert. J Biol Chem. 1991 Apr 5;266(10):6137–6141. [PubMed] [Google Scholar]
  50. Thomas T. J., Thomas T. Polyamine-induced Z-DNA conformation in plasmids containing (dA-dC)n.(dG-dT)n inserts and increased binding of lupus autoantibodies to the Z-DNA form of plasmids. Biochem J. 1994 Mar 1;298(Pt 2):485–491. doi: 10.1042/bj2980485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Thomas T., Gallo M. A., Klinge C. M., Thomas T. J. Polyamine-mediated conformational perturbations in DNA alter the binding of estrogen receptor to poly(dG-m5dC).poly(dG-m5dC) and a plasmid containing the estrogen response element. J Steroid Biochem Mol Biol. 1995 Aug;54(3-4):89–99. doi: 10.1016/0960-0760(95)00126-k. [DOI] [PubMed] [Google Scholar]
  52. Thomas T., Kiang D. T. Modulation of the binding of progesterone receptor to DNA by polyamines. Cancer Res. 1988 Mar 1;48(5):1217–1222. [PubMed] [Google Scholar]
  53. Weiss R. A., Eichner R., Sun T. T. Monoclonal antibody analysis of keratin expression in epidermal diseases: a 48- and 56-kdalton keratin as molecular markers for hyperproliferative keratinocytes. J Cell Biol. 1984 Apr;98(4):1397–1406. doi: 10.1083/jcb.98.4.1397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Williams T., Admon A., Lüscher B., Tjian R. Cloning and expression of AP-2, a cell-type-specific transcription factor that activates inducible enhancer elements. Genes Dev. 1988 Dec;2(12A):1557–1569. doi: 10.1101/gad.2.12a.1557. [DOI] [PubMed] [Google Scholar]
  55. Wu R. L., Chen T. T., Sun T. T. Functional importance of an Sp1- and an NFkB-related nuclear protein in a keratinocyte-specific promoter of rabbit K3 keratin gene. J Biol Chem. 1994 Nov 11;269(45):28450–28459. [PubMed] [Google Scholar]
  56. Wu R. L., Galvin S., Wu S. K., Xu C., Blumenberg M., Sun T. T. A 300 bp 5'-upstream sequence of a differentiation-dependent rabbit K3 keratin gene can serve as a keratinocyte-specific promoter. J Cell Sci. 1993 Jun;105(Pt 2):303–316. doi: 10.1242/jcs.105.2.303. [DOI] [PubMed] [Google Scholar]
  57. Wu R. L., Zhu G., Galvin S., Xu C., Haseba T., Chaloin-Dufau C., Dhouailly D., Wei Z. G., Lavker R. M., Kao W. Y. Lineage-specific and differentiation-dependent expression of K12 keratin in rabbit corneal/limbal epithelial cells: cDNA cloning and northern blot analysis. Differentiation. 1994 Jan;55(2):137–144. doi: 10.1046/j.1432-0436.1994.5520137.x. [DOI] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES