Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1997 Jun;17(6):3125–3136. doi: 10.1128/mcb.17.6.3125

Cryptic signals and the fidelity of V(D)J joining.

S M Lewis 1, E Agard 1, S Suh 1, L Czyzyk 1
PMCID: PMC232165  PMID: 9154811

Abstract

V(D)J recombination is responsible for the de novo creation of antigen receptor genes in T- and B-cell precursors. To the extent that lymphopoiesis takes place throughout an animal's lifetime, recombination errors present an ongoing problem. One type of aberrant rearrangement ensues when DNA sequences resembling a V(D)J joining signal are targeted by mistake. This study investigates the type of sequence likely to be subject to mistargeting, the level of joining-signal function associated with these sequences, and the number of such cryptic joining signals in the genome.

Full Text

The Full Text of this article is available as a PDF (239.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akamatsu Y., Tsurushita N., Nagawa F., Matsuoka M., Okazaki K., Imai M., Sakano H. Essential residues in V(D)J recombination signals. J Immunol. 1994 Nov 15;153(10):4520–4529. [PubMed] [Google Scholar]
  2. Aplan P. D., Lombardi D. P., Ginsberg A. M., Cossman J., Bertness V. L., Kirsch I. R. Disruption of the human SCL locus by "illegitimate" V-(D)-J recombinase activity. Science. 1990 Dec 7;250(4986):1426–1429. doi: 10.1126/science.2255914. [DOI] [PubMed] [Google Scholar]
  3. Arden B. Diversity of novel recombining elements suggests developmentally programmed expression of the T cell receptor alpha/delta locus. Eur J Immunol. 1992 May;22(5):1287–1291. doi: 10.1002/eji.1830220525. [DOI] [PubMed] [Google Scholar]
  4. Aster J. C., Sklar J. Interallelic V(D)J trans-rearrangement within the beta T cell receptor gene is infrequent and occurs preferentially during attempted D beta to J beta joining. J Exp Med. 1992 Jun 1;175(6):1773–1782. doi: 10.1084/jem.175.6.1773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bailey S. N., Rosenberg N. Assessing the pathogenic potential of the V(D)J recombinase by interlocus immunoglobulin light-chain gene rearrangement. Mol Cell Biol. 1997 Feb;17(2):887–894. doi: 10.1128/mcb.17.2.887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bernard O., Guglielmi P., Jonveaux P., Cherif D., Gisselbrecht S., Mauchauffe M., Berger R., Larsen C. J., Mathieu-Mahul D. Two distinct mechanisms for the SCL gene activation in the t(1;14) translocation of T-cell leukemias. Genes Chromosomes Cancer. 1990 Jan;1(3):194–208. doi: 10.1002/gcc.2870010303. [DOI] [PubMed] [Google Scholar]
  7. Bernard O., Lecointe N., Jonveaux P., Souyri M., Mauchauffé M., Berger R., Larsen C. J., Mathieu-Mahul D. Two site-specific deletions and t(1;14) translocation restricted to human T-cell acute leukemias disrupt the 5' part of the tal-1 gene. Oncogene. 1991 Aug;6(8):1477–1488. [PubMed] [Google Scholar]
  8. Boehm T., Baer R., Lavenir I., Forster A., Waters J. J., Nacheva E., Rabbitts T. H. The mechanism of chromosomal translocation t(11;14) involving the T-cell receptor C delta locus on human chromosome 14q11 and a transcribed region of chromosome 11p15. EMBO J. 1988 Feb;7(2):385–394. doi: 10.1002/j.1460-2075.1988.tb02825.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Boubnov N. V., Wills Z. P., Weaver D. T. Coding sequence composition flanking either signal element alters V(D)J recombination efficiency. Nucleic Acids Res. 1995 Mar 25;23(6):1060–1067. doi: 10.1093/nar/23.6.1060. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Breit T. M., Mol E. J., Wolvers-Tettero I. L., Ludwig W. D., van Wering E. R., van Dongen J. J. Site-specific deletions involving the tal-1 and sil genes are restricted to cells of the T cell receptor alpha/beta lineage: T cell receptor delta gene deletion mechanism affects multiple genes. J Exp Med. 1993 Apr 1;177(4):965–977. doi: 10.1084/jem.177.4.965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Brown L., Cheng J. T., Chen Q., Siciliano M. J., Crist W., Buchanan G., Baer R. Site-specific recombination of the tal-1 gene is a common occurrence in human T cell leukemia. EMBO J. 1990 Oct;9(10):3343–3351. doi: 10.1002/j.1460-2075.1990.tb07535.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Burnett R. C., Espinosa R., 3rd, Shows T. B., Eddy R. L., LeBeau M. M., Rowley J. D., Diaz M. O. Molecular analysis of a t(11;14)(q23;q11) from a patient with null-cell acute lymphoblastic leukemia. Genes Chromosomes Cancer. 1993 May;7(1):38–46. doi: 10.1002/gcc.2870070107. [DOI] [PubMed] [Google Scholar]
  13. Carr T. F., Stevens R. F., Burton C., Harrison C. J. An interstitial deletion in the rearranged T-cell receptor gamma chain locus in a case of T-cell acute lymphoblastic leukaemia. Br J Haematol. 1995 Mar;89(3):688–689. doi: 10.1111/j.1365-2141.1995.tb08397.x. [DOI] [PubMed] [Google Scholar]
  14. Chen C., Nagy Z., Prak E. L., Weigert M. Immunoglobulin heavy chain gene replacement: a mechanism of receptor editing. Immunity. 1995 Dec;3(6):747–755. doi: 10.1016/1074-7613(95)90064-0. [DOI] [PubMed] [Google Scholar]
  15. Cheng J. T., Yang C. Y., Hernandez J., Embrey J., Baer R. The chromosome translocation (11;14)(p13;q11) associated with T cell acute leukemia. Asymmetric diversification of the translocational junctions. J Exp Med. 1990 Feb 1;171(2):489–501. doi: 10.1084/jem.171.2.489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Cortes P., Ye Z. S., Baltimore D. RAG-1 interacts with the repeated amino acid motif of the human homologue of the yeast protein SRP1. Proc Natl Acad Sci U S A. 1994 Aug 2;91(16):7633–7637. doi: 10.1073/pnas.91.16.7633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Covey L. R., Ferrier P., Alt F. W. VH to VHDJH rearrangement is mediated by the internal VH heptamer. Int Immunol. 1990;2(6):579–583. doi: 10.1093/intimm/2.6.579. [DOI] [PubMed] [Google Scholar]
  18. Cuomo C. A., Kirch S. A., Gyuris J., Brent R., Oettinger M. A. Rch1, a protein that specifically interacts with the RAG-1 recombination-activating protein. Proc Natl Acad Sci U S A. 1994 Jun 21;91(13):6156–6160. doi: 10.1073/pnas.91.13.6156. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Cuomo C. A., Mundy C. L., Oettinger M. A. DNA sequence and structure requirements for cleavage of V(D)J recombination signal sequences. Mol Cell Biol. 1996 Oct;16(10):5683–5690. doi: 10.1128/mcb.16.10.5683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Daitch L. E., Moore M. W., Persiani D. M., Durdik J. M., Selsing E. Transcription and recombination of the murine RS element. J Immunol. 1992 Aug 1;149(3):832–840. [PubMed] [Google Scholar]
  21. Difilippantonio M. J., McMahan C. J., Eastman Q. M., Spanopoulou E., Schatz D. G. RAG1 mediates signal sequence recognition and recruitment of RAG2 in V(D)J recombination. Cell. 1996 Oct 18;87(2):253–262. doi: 10.1016/s0092-8674(00)81343-4. [DOI] [PubMed] [Google Scholar]
  22. Ezekiel U. R., Engler P., Stern D., Storb U. Asymmetric processing of coding ends and the effect of coding end nucleotide composition on V(D)J recombination. Immunity. 1995 Apr;2(4):381–389. doi: 10.1016/1074-7613(95)90146-9. [DOI] [PubMed] [Google Scholar]
  23. Fang W., Mueller D. L., Pennell C. A., Rivard J. J., Li Y. S., Hardy R. R., Schlissel M. S., Behrens T. W. Frequent aberrant immunoglobulin gene rearrangements in pro-B cells revealed by a bcl-xL transgene. Immunity. 1996 Mar;4(3):291–299. doi: 10.1016/s1074-7613(00)80437-9. [DOI] [PubMed] [Google Scholar]
  24. Fuscoe J. C., Zimmerman L. J., Harrington-Brock K., Burnette L., Moore M. M., Nicklas J. A., O'Neill J. P., Albertini R. J. V(D)J recombinase-mediated deletion of the hprt gene in T-lymphocytes from adult humans. Mutat Res. 1992 Sep;283(1):13–20. doi: 10.1016/0165-7992(92)90116-y. [DOI] [PubMed] [Google Scholar]
  25. Fuscoe J. C., Zimmerman L. J., Lippert M. J., Nicklas J. A., O'Neill J. P., Albertini R. J. V(D)J recombinase-like activity mediates hprt gene deletion in human fetal T-lymphocytes. Cancer Res. 1991 Nov 1;51(21):6001–6005. [PubMed] [Google Scholar]
  26. Gellert M. A new view of V(D)J recombination. Genes Cells. 1996 Mar;1(3):269–275. doi: 10.1046/j.1365-2443.1996.22023.x. [DOI] [PubMed] [Google Scholar]
  27. Gerstein R. M., Lieber M. R. Coding end sequence can markedly affect the initiation of V(D)J recombination. Genes Dev. 1993 Jul;7(7B):1459–1469. doi: 10.1101/gad.7.7b.1459. [DOI] [PubMed] [Google Scholar]
  28. Goldfarb A. N., Greenberg J. M. T-cell acute lymphoblastic leukemia and the associated basic helix-loop-helix gene SCL/tal. Leuk Lymphoma. 1994 Jan;12(3-4):157–166. doi: 10.3109/10428199409059586. [DOI] [PubMed] [Google Scholar]
  29. Hansen-Hagge T. E., Yokota S., Reuter H. J., Schwarz K., Bartram C. R. Human common acute lymphoblastic leukemia-derived cell lines are competent to recombine their T-cell receptor delta/alpha regions along a hierarchically ordered pathway. Blood. 1992 Nov 1;80(9):2353–2362. [PubMed] [Google Scholar]
  30. Hara J., Takihara Y., Yumura-Yagi K., Ishihara S., Tawa A., Mak T. W., Gelfand E. W., Okada S., Kawa-Ha K. Differential usage of delta recombining element and V delta genes during T-cell ontogeny. Blood. 1991 Oct 15;78(8):2075–2081. [PubMed] [Google Scholar]
  31. Hesse J. E., Lieber M. R., Gellert M., Mizuuchi K. Extrachromosomal DNA substrates in pre-B cells undergo inversion or deletion at immunoglobulin V-(D)-J joining signals. Cell. 1987 Jun 19;49(6):775–783. doi: 10.1016/0092-8674(87)90615-5. [DOI] [PubMed] [Google Scholar]
  32. Hesse J. E., Lieber M. R., Mizuuchi K., Gellert M. V(D)J recombination: a functional definition of the joining signals. Genes Dev. 1989 Jul;3(7):1053–1061. doi: 10.1101/gad.3.7.1053. [DOI] [PubMed] [Google Scholar]
  33. Hiom K., Gellert M. A stable RAG1-RAG2-DNA complex that is active in V(D)J cleavage. Cell. 1997 Jan 10;88(1):65–72. doi: 10.1016/s0092-8674(00)81859-0. [DOI] [PubMed] [Google Scholar]
  34. Höchtl J., Zachau H. G. A novel type of aberrant recombination in immunoglobulin genes and its implications for V-J joining mechanism. Nature. 1983 Mar 17;302(5905):260–263. doi: 10.1038/302260a0. [DOI] [PubMed] [Google Scholar]
  35. Janssen J. W., Ludwig W. D., Sterry W., Bartram C. R. SIL-TAL1 deletion in T-cell acute lymphoblastic leukemia. Leukemia. 1993 Aug;7(8):1204–1210. [PubMed] [Google Scholar]
  36. Kleinfield R., Hardy R. R., Tarlinton D., Dangl J., Herzenberg L. A., Weigert M. Recombination between an expressed immunoglobulin heavy-chain gene and a germline variable gene segment in a Ly 1+ B-cell lymphoma. 1986 Aug 28-Sep 3Nature. 322(6082):843–846. doi: 10.1038/322843a0. [DOI] [PubMed] [Google Scholar]
  37. Knight K. L., Kingzette M., Crane M. A., Zhai S. K. Transchromosomally derived Ig heavy chains. J Immunol. 1995 Jul 15;155(2):684–691. [PubMed] [Google Scholar]
  38. Komori T., Sugiyama H., Kishimoto S. A novel VHDJH to JH joining that induces H chain production in an Ig-null immature B cell line. J Immunol. 1989 Aug 1;143(3):1040–1045. [PubMed] [Google Scholar]
  39. Leu T. M., Schatz D. G. rag-1 and rag-2 are components of a high-molecular-weight complex, and association of rag-2 with this complex is rag-1 dependent. Mol Cell Biol. 1995 Oct;15(10):5657–5670. doi: 10.1128/mcb.15.10.5657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Lewis S. M., Hesse J. E. Cutting and closing without recombination in V(D)J joining. EMBO J. 1991 Dec;10(12):3631–3639. doi: 10.1002/j.1460-2075.1991.tb04929.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Lewis S. M., Hesse J. E., Mizuuchi K., Gellert M. Novel strand exchanges in V(D)J recombination. Cell. 1988 Dec 23;55(6):1099–1107. doi: 10.1016/0092-8674(88)90254-1. [DOI] [PubMed] [Google Scholar]
  42. Lewis S. M. P nucleotides, hairpin DNA and V(D)J joining: making the connection. Semin Immunol. 1994 Jun;6(3):131–141. doi: 10.1006/smim.1994.1019. [DOI] [PubMed] [Google Scholar]
  43. Lewis S. M. The mechanism of V(D)J joining: lessons from molecular, immunological, and comparative analyses. Adv Immunol. 1994;56:27–150. doi: 10.1016/s0065-2776(08)60450-2. [DOI] [PubMed] [Google Scholar]
  44. Lieber M. R., Hesse J. E., Lewis S., Bosma G. C., Rosenberg N., Mizuuchi K., Bosma M. J., Gellert M. The defect in murine severe combined immune deficiency: joining of signal sequences but not coding segments in V(D)J recombination. Cell. 1988 Oct 7;55(1):7–16. doi: 10.1016/0092-8674(88)90004-9. [DOI] [PubMed] [Google Scholar]
  45. Lieber M. R., Hesse J. E., Mizuuchi K., Gellert M. Developmental stage specificity of the lymphoid V(D)J recombination activity. Genes Dev. 1987 Oct;1(8):751–761. doi: 10.1101/gad.1.8.751. [DOI] [PubMed] [Google Scholar]
  46. McGuire E. A., Hockett R. D., Pollock K. M., Bartholdi M. F., O'Brien S. J., Korsmeyer S. J. The t(11;14)(p15;q11) in a T-cell acute lymphoblastic leukemia cell line activates multiple transcripts, including Ttg-1, a gene encoding a potential zinc finger protein. Mol Cell Biol. 1989 May;9(5):2124–2132. doi: 10.1128/mcb.9.5.2124. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. McKearn J. P., McCubrey J., Fagg B. Enrichment of hematopoietic precursor cells and cloning of multipotential B-lymphocyte precursors. Proc Natl Acad Sci U S A. 1985 Nov;82(21):7414–7418. doi: 10.1073/pnas.82.21.7414. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Meier J. T., Lewis S. M. P nucleotides in V(D)J recombination: a fine-structure analysis. Mol Cell Biol. 1993 Feb;13(2):1078–1092. doi: 10.1128/mcb.13.2.1078. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Melchers F., Karasuyama H., Haasner D., Bauer S., Kudo A., Sakaguchi N., Jameson B., Rolink A. The surrogate light chain in B-cell development. Immunol Today. 1993 Feb;14(2):60–68. doi: 10.1016/0167-5699(93)90060-X. [DOI] [PubMed] [Google Scholar]
  50. Menetski J. P., Gellert M. V(D)J recombination activity in lymphoid cell lines is increased by agents that elevate cAMP. Proc Natl Acad Sci U S A. 1990 Dec;87(23):9324–9328. doi: 10.1073/pnas.87.23.9324. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Nakajima P. B., Menetski J. P., Roth D. B., Gellert M., Bosma M. J. V-D-J rearrangements at the T cell receptor delta locus in mouse thymocytes of the alpha beta lineage. Immunity. 1995 Nov;3(5):609–621. doi: 10.1016/1074-7613(95)90132-9. [DOI] [PubMed] [Google Scholar]
  52. Nakatani T., Horigome K., Nomura N., Kondo T., Ohtsuka H., Noguchi H., Honjo T. Deletion of human JK segments by site-specific recombination recognizing the conserved nonamer and heptamer sequences. Nucleic Acids Res. 1990 Sep 25;18(18):5529–5532. doi: 10.1093/nar/18.18.5529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Nuñez C., Nishimoto N., Gartland G. L., Billips L. G., Burrows P. D., Kubagawa H., Cooper M. D. B cells are generated throughout life in humans. J Immunol. 1996 Jan 15;156(2):866–872. [PubMed] [Google Scholar]
  54. Oettinger M. A. Cutting apart V(D)J recombination. Curr Opin Genet Dev. 1996 Apr;6(2):141–145. doi: 10.1016/s0959-437x(96)80042-6. [DOI] [PubMed] [Google Scholar]
  55. Ohashi P. S., Wallace V. A., Broughton H., Ohashi C. T., Ferrick D. A., Jost V., Mak T. W., Hengartner H., Pircher H. Specific deletion of the J-C delta locus in murine alpha/beta T cell clones and studies using transgenic mice. Eur J Immunol. 1990 Mar;20(3):517–522. doi: 10.1002/eji.1830200309. [DOI] [PubMed] [Google Scholar]
  56. Ramsden D. A., McBlane J. F., van Gent D. C., Gellert M. Distinct DNA sequence and structure requirements for the two steps of V(D)J recombination signal cleavage. EMBO J. 1996 Jun 17;15(12):3197–3206. [PMC free article] [PubMed] [Google Scholar]
  57. Reth M., Gehrmann P., Petrac E., Wiese P. A novel VH to VHDJH joining mechanism in heavy-chain-negative (null) pre-B cells results in heavy-chain production. 1986 Aug 28-Sep 3Nature. 322(6082):840–842. doi: 10.1038/322840a0. [DOI] [PubMed] [Google Scholar]
  58. Roberts J. L., Lauzurica P., Krangel M. S. Developmental regulation of VDJ recombination by the core fragment of the T cell receptor alpha enhancer. J Exp Med. 1997 Jan 6;185(1):131–140. doi: 10.1084/jem.185.1.131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Roman C. A., Baltimore D. Genetic evidence that the RAG1 protein directly participates in V(D)J recombination through substrate recognition. Proc Natl Acad Sci U S A. 1996 Mar 19;93(6):2333–2338. doi: 10.1073/pnas.93.6.2333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Roth D. B., Porter T. N., Wilson J. H. Mechanisms of nonhomologous recombination in mammalian cells. Mol Cell Biol. 1985 Oct;5(10):2599–2607. doi: 10.1128/mcb.5.10.2599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Sadofsky M. J., Hesse J. E., van Gent D. C., Gellert M. RAG-1 mutations that affect the target specificity of V(D)j recombination: a possible direct role of RAG-1 in site recognition. Genes Dev. 1995 Sep 1;9(17):2193–2199. doi: 10.1101/gad.9.17.2193. [DOI] [PubMed] [Google Scholar]
  62. Shimizu T., Iwasato T., Yamagishi H. Deletions of immunoglobulin C kappa region characterized by the circular excision products in mouse splenocytes. J Exp Med. 1991 May 1;173(5):1065–1072. doi: 10.1084/jem.173.5.1065. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Siminovitch K. A., Bakhshi A., Goldman P., Korsmeyer S. J. A uniform deleting element mediates the loss of kappa genes in human B cells. Nature. 1985 Jul 18;316(6025):260–262. doi: 10.1038/316260a0. [DOI] [PubMed] [Google Scholar]
  64. Spanopoulou E., Zaitseva F., Wang F. H., Santagata S., Baltimore D., Panayotou G. The homeodomain region of Rag-1 reveals the parallel mechanisms of bacterial and V(D)J recombination. Cell. 1996 Oct 18;87(2):263–276. doi: 10.1016/s0092-8674(00)81344-6. [DOI] [PubMed] [Google Scholar]
  65. Stallings R. L., Ford A. F., Nelson D., Torney D. C., Hildebrand C. E., Moyzis R. K. Evolution and distribution of (GT)n repetitive sequences in mammalian genomes. Genomics. 1991 Jul;10(3):807–815. doi: 10.1016/0888-7543(91)90467-s. [DOI] [PubMed] [Google Scholar]
  66. Stanhope-Baker P., Hudson K. M., Shaffer A. L., Constantinescu A., Schlissel M. S. Cell type-specific chromatin structure determines the targeting of V(D)J recombinase activity in vitro. Cell. 1996 Jun 14;85(6):887–897. doi: 10.1016/s0092-8674(00)81272-6. [DOI] [PubMed] [Google Scholar]
  67. Takeshita S., Toda M., Yamagishi H. Excision products of the T cell receptor gene support a progressive rearrangement model of the alpha/delta locus. EMBO J. 1989 Nov;8(11):3261–3270. doi: 10.1002/j.1460-2075.1989.tb08486.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Taki S., Schwenk F., Rajewsky K. Rearrangement of upstream DH and VH genes to a rearranged immunoglobulin variable region gene inserted into the DQ52-JH region of the immunoglobulin heavy chain locus. Eur J Immunol. 1995 Jul;25(7):1888–1896. doi: 10.1002/eji.1830250715. [DOI] [PubMed] [Google Scholar]
  69. Taylor J. J., Rowe D., Reid M. M., Middleton P. G. An interstitial deletion in the rearranged T-cell receptor gamma chain locus in a case of T-cell acute lymphoblastic leukaemia. Br J Haematol. 1993 Sep;85(1):193–196. doi: 10.1111/j.1365-2141.1993.tb08669.x. [DOI] [PubMed] [Google Scholar]
  70. Usuda S., Takemori T., Matsuoka M., Shirasawa T., Yoshida K., Mori A., Ishizaka K., Sakano H. Immunoglobulin V gene replacement is caused by the intramolecular DNA deletion mechanism. EMBO J. 1992 Feb;11(2):611–618. doi: 10.1002/j.1460-2075.1992.tb05093.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Zúiga-Pflücker J. C., Lenardo M. J. Regulation of thymocyte development from immature progenitors. Curr Opin Immunol. 1996 Apr;8(2):215–224. doi: 10.1016/s0952-7915(96)80060-4. [DOI] [PubMed] [Google Scholar]
  72. de Villartay J. P., Hockett R. D., Coran D., Korsmeyer S. J., Cohen D. I. Deletion of the human T-cell receptor delta-gene by a site-specific recombination. Nature. 1988 Sep 8;335(6186):170–174. doi: 10.1038/335170a0. [DOI] [PubMed] [Google Scholar]
  73. van Gent D. C., Ramsden D. A., Gellert M. The RAG1 and RAG2 proteins establish the 12/23 rule in V(D)J recombination. Cell. 1996 Apr 5;85(1):107–113. doi: 10.1016/s0092-8674(00)81086-7. [DOI] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES