Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1997 Jun;17(6):3137–3145. doi: 10.1128/mcb.17.6.3137

Two types of zinc fingers are required for dimerization of the serendipity delta transcriptional activator.

F Payre 1, P Buono 1, N Vanzo 1, A Vincent 1
PMCID: PMC232166  PMID: 9154812

Abstract

The serendipity (sry) delta zinc finger protein controls bicoid gene expression during Drosophila melanogaster oogenesis. In addition, sry delta mutants display various zygotic phenotypes, ranging from abnormal embryogenesis to sex-biased adult lethality. We report here that sry delta is a sequence-specific transcriptional activator. A single sry delta consensus binding site (SDCS), in either orientation, is sufficient to promote transcription activation in cell culture, and multiple SDCSs mediate a strong synergistic activation, reflecting the cooperativity of sry delta binding to DNA. Further, several lines of evidence strongly suggest that sry delta binds to DNA as a dimer. While each of three point mutations located in the third zinc finger of sry delta drastically reduces its DNA binding affinity, a fourth mutation, located in the N-terminal region of the protein, specifically affects the cooperativity of DNA binding. This mutation reveals the functional importance of a putative Cys2/Cys2 zinc finger motif of a novel type, located outside the DNA binding domain. A systematic deletion analysis shows that interaction between this proposed Cys2/Cys2 motif and a classical Cys2/His2 zinc finger mediates homodimerization, which is required for DNA binding cooperativity.

Full Text

The Full Text of this article is available as a PDF (869.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berg J. M. Sp1 and the subfamily of zinc finger proteins with guanine-rich binding sites. Proc Natl Acad Sci U S A. 1992 Dec 1;89(23):11109–11110. doi: 10.1073/pnas.89.23.11109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chen W., Zollman S., Couderc J. L., Laski F. A. The BTB domain of bric à brac mediates dimerization in vitro. Mol Cell Biol. 1995 Jun;15(6):3424–3429. doi: 10.1128/mcb.15.6.3424. [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
  3. Choo Y., Klug A. A role in DNA binding for the linker sequences of the first three zinc fingers of TFIIIA. Nucleic Acids Res. 1993 Jul 25;21(15):3341–3346. doi: 10.1093/nar/21.15.3341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Courey A. J., Tjian R. Analysis of Sp1 in vivo reveals multiple transcriptional domains, including a novel glutamine-rich activation motif. Cell. 1988 Dec 2;55(5):887–898. doi: 10.1016/0092-8674(88)90144-4. [DOI] [PubMed] [Google Scholar]
  5. Crozatier M., Kongsuwan K., Ferrer P., Merriam J. R., Lengyel J. A., Vincent A. Single amino acid exchanges in separate domains of the Drosophila serendipity delta zinc finger protein cause embryonic and sex biased lethality. Genetics. 1992 Aug;131(4):905–916. doi: 10.1093/genetics/131.4.905. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Del Rio S., Setzer D. R. The role of zinc fingers in transcriptional activation by transcription factor IIIA. Proc Natl Acad Sci U S A. 1993 Jan 1;90(1):168–172. doi: 10.1073/pnas.90.1.168. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Desjarlais J. R., Berg J. M. Use of a zinc-finger consensus sequence framework and specificity rules to design specific DNA binding proteins. Proc Natl Acad Sci U S A. 1993 Mar 15;90(6):2256–2260. doi: 10.1073/pnas.90.6.2256. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fairall L., Schwabe J. W., Chapman L., Finch J. T., Rhodes D. The crystal structure of a two zinc-finger peptide reveals an extension to the rules for zinc-finger/DNA recognition. Nature. 1993 Dec 2;366(6454):483–487. doi: 10.1038/366483a0. [DOI] [PubMed] [Google Scholar]
  9. Ferrer P., Crozatier M., Salles C., Vincent A. Interspecific comparison of Drosophila serendipity delta and beta: multimodular structure of these C2H2 zinc finger proteins. J Mol Evol. 1994 Mar;38(3):263–273. doi: 10.1007/BF00176088. [DOI] [PubMed] [Google Scholar]
  10. Freedman L. P., Luisi B. F. On the mechanism of DNA binding by nuclear hormone receptors: a structural and functional perspective. J Cell Biochem. 1993 Feb;51(2):140–150. doi: 10.1002/jcb.240510205. [DOI] [PubMed] [Google Scholar]
  11. Giel M., Slósarek G., Barciszewski J., Rekowski P., Kupryszewski G. Nuclease properties of two putative zinc finger peptides. Int J Biol Macromol. 1993 Oct;15(5):259–264. doi: 10.1016/0141-8130(93)90024-g. [DOI] [PubMed] [Google Scholar]
  12. Hagman J., Gutch M. J., Lin H., Grosschedl R. EBF contains a novel zinc coordination motif and multiple dimerization and transcriptional activation domains. EMBO J. 1995 Jun 15;14(12):2907–2916. doi: 10.1002/j.1460-2075.1995.tb07290.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Jacobs G. H. Determination of the base recognition positions of zinc fingers from sequence analysis. EMBO J. 1992 Dec;11(12):4507–4517. doi: 10.1002/j.1460-2075.1992.tb05552.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Klevit R. E. Recognition of DNA by Cys2,His2 zinc fingers. Science. 1991 Sep 20;253(5026):1367–1393. doi: 10.1126/science.1896847. [DOI] [PubMed] [Google Scholar]
  15. Klug A., Schwabe J. W. Protein motifs 5. Zinc fingers. FASEB J. 1995 May;9(8):597–604. [PubMed] [Google Scholar]
  16. Koivisto U. M., Palvimo J. J., Jänne O. A., Kontula K. A single-base substitution in the proximal Sp1 site of the human low density lipoprotein receptor promoter as a cause of heterozygous familial hypercholesterolemia. Proc Natl Acad Sci U S A. 1994 Oct 25;91(22):10526–10530. doi: 10.1073/pnas.91.22.10526. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lee M. S., Gippert G. P., Soman K. V., Case D. A., Wright P. E. Three-dimensional solution structure of a single zinc finger DNA-binding domain. Science. 1989 Aug 11;245(4918):635–637. doi: 10.1126/science.2503871. [DOI] [PubMed] [Google Scholar]
  18. Matheny C., Day M. L., Milbrandt J. The nuclear localization signal of NGFI-A is located within the zinc finger DNA binding domain. J Biol Chem. 1994 Mar 18;269(11):8176–8181. [PubMed] [Google Scholar]
  19. Miller J., McLachlan A. D., Klug A. Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes. EMBO J. 1985 Jun;4(6):1609–1614. doi: 10.1002/j.1460-2075.1985.tb03825.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Milne C. A., Segall J. Mapping regions of yeast transcription factor IIIA required for DNA binding, interaction with transcription factor IIIC, and transcription activity. J Biol Chem. 1993 May 25;268(15):11364–11371. [PubMed] [Google Scholar]
  21. Nardelli J., Gibson T. J., Vesque C., Charnay P. Base sequence discrimination by zinc-finger DNA-binding domains. Nature. 1991 Jan 10;349(6305):175–178. doi: 10.1038/349175a0. [DOI] [PubMed] [Google Scholar]
  22. Noselli S., Payre F., Vincent A. Zinc fingers and other domains cooperate in binding of Drosophila sry beta and delta proteins at specific chromosomal sites. Mol Cell Biol. 1992 Feb;12(2):724–733. doi: 10.1128/mcb.12.2.724. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Pascal E., Tjian R. Different activation domains of Sp1 govern formation of multimers and mediate transcriptional synergism. Genes Dev. 1991 Sep;5(9):1646–1656. doi: 10.1101/gad.5.9.1646. [DOI] [PubMed] [Google Scholar]
  24. Pavletich N. P., Pabo C. O. Crystal structure of a five-finger GLI-DNA complex: new perspectives on zinc fingers. Science. 1993 Sep 24;261(5129):1701–1707. doi: 10.1126/science.8378770. [DOI] [PubMed] [Google Scholar]
  25. Pavletich N. P., Pabo C. O. Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 A. Science. 1991 May 10;252(5007):809–817. doi: 10.1126/science.2028256. [DOI] [PubMed] [Google Scholar]
  26. Payre F., Crozatier M., Vincent A. Direct control of transcription of the Drosophila morphogen bicoid by the serendipity delta zinc finger protein, as revealed by in vivo analysis of a finger swap. Genes Dev. 1994 Nov 15;8(22):2718–2728. doi: 10.1101/gad.8.22.2718. [DOI] [PubMed] [Google Scholar]
  27. Payre F., Noselli S., Lefrère V., Vincent A. The closely related Drosophila sry beta and sry delta zinc finger proteins show differential embryonic expression and distinct patterns of binding sites on polytene chromosomes. Development. 1990 Sep;110(1):141–149. doi: 10.1242/dev.110.1.141. [DOI] [PubMed] [Google Scholar]
  28. Payre F., Vincent A. Genomic targets of the serendipity beta and delta zinc finger proteins and their respective DNA recognition sites. EMBO J. 1991 Sep;10(9):2533–2541. doi: 10.1002/j.1460-2075.1991.tb07793.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Payre F., Yanicostas C., Vincent A. Serendipity delta, a Drosophila zinc finger protein present in embryonic nuclei at the onset of zygotic gene transcription. Dev Biol. 1989 Dec;136(2):469–480. doi: 10.1016/0012-1606(89)90272-8. [DOI] [PubMed] [Google Scholar]
  30. Rhodes D., Klug A. Zinc fingers. Sci Am. 1993 Feb;268(2):56-9, 62-5. doi: 10.1038/scientificamerican0293-56. [DOI] [PubMed] [Google Scholar]
  31. Rollins M. B., Del Rio S., Galey A. L., Setzer D. R., Andrews M. T. Role of TFIIIA zinc fingers in vivo: analysis of single-finger function in developing Xenopus embryos. Mol Cell Biol. 1993 Aug;13(8):4776–4783. doi: 10.1128/mcb.13.8.4776. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Sauer F., Jäckle H. Dimerization and the control of transcription by Krüppel. Nature. 1993 Jul 29;364(6436):454–457. doi: 10.1038/364454a0. [DOI] [PubMed] [Google Scholar]
  33. Schmeichel K. L., Beckerle M. C. The LIM domain is a modular protein-binding interface. Cell. 1994 Oct 21;79(2):211–219. doi: 10.1016/0092-8674(94)90191-0. [DOI] [PubMed] [Google Scholar]
  34. Sánchez-García I., Rabbitts T. H. The LIM domain: a new structural motif found in zinc-finger-like proteins. Trends Genet. 1994 Sep;10(9):315–320. doi: 10.1016/0168-9525(94)90034-5. [DOI] [PubMed] [Google Scholar]
  35. Vesque C., Charnay P. Mapping functional regions of the segment-specific transcription factor Krox-20. Nucleic Acids Res. 1992 May 25;20(10):2485–2492. doi: 10.1093/nar/20.10.2485. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES