Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1997 Jun;17(6):3459–3467. doi: 10.1128/mcb.17.6.3459

Regulation of microtubule dynamics by Ca2+/calmodulin-dependent kinase IV/Gr-dependent phosphorylation of oncoprotein 18.

H Melander Gradin 1, U Marklund 1, N Larsson 1, T A Chatila 1, M Gullberg 1
PMCID: PMC232199  PMID: 9154845

Abstract

Oncoprotein 18 (Op18; also termed p19, 19K, p18, prosolin, and stathmin) is a regulator of microtubule (MT) dynamics and is phosphorylated by multiple kinase systems on four Ser residues. In addition to cell cycle-regulated phosphorylation, external signals induce phosphorylation of Op18 on Ser-25 by the mitogen-activated protein kinase and on Ser-16 by the Ca2+/calmodulin-dependent kinase IV/Gr (CaMK IV/Gr). Here we show that induced expression of a constitutively active mutant of CaMK IV/Gr results in phosphorylation of Op18 on Ser-16. In parallel, we also observed partial degradation of Op18 and a rapid increase of total cellular MTs. These results suggest a link between CaMK IV/Gr, Op18, and MT dynamics. To explore such a putative link, we optimized a genetic system that allowed conditional coexpression of a series of CaMK IV/Gr and Op18 derivatives. The result shows that CaMK IV/Gr can suppress the MT-regulating activity of Op18 by phosphorylation on Ser-16. In line with these results, by employing a chemical cross-linking protocol, it was shown that phosphorylation of Ser-16 is involved in weakening of the interactions between Op18 and tubulin. Taken together, these data suggest that the mechanism of CaMK IV/Gr-mediated suppression of Op18 activity involves both partial degradation of Op18 and direct modulation of the MT-destabilizing activity of this protein. These results show that Op18 phosphorylation by CaMK IV/Gr may couple alterations of MT dynamics in response to external signals that involve Ca2+.

Full Text

The Full Text of this article is available as a PDF (666.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Belmont L. D., Mitchison T. J. Identification of a protein that interacts with tubulin dimers and increases the catastrophe rate of microtubules. Cell. 1996 Feb 23;84(4):623–631. doi: 10.1016/s0092-8674(00)81037-5. [DOI] [PubMed] [Google Scholar]
  2. Beretta L., Dobránsky T., Sobel A. Multiple phosphorylation of stathmin. Identification of four sites phosphorylated in intact cells and in vitro by cyclic AMP-dependent protein kinase and p34cdc2. J Biol Chem. 1993 Sep 25;268(27):20076–20084. [PubMed] [Google Scholar]
  3. Brattsand G., Marklund U., Nylander K., Roos G., Gullberg M. Cell-cycle-regulated phosphorylation of oncoprotein 18 on Ser16, Ser25 and Ser38. Eur J Biochem. 1994 Mar 1;220(2):359–368. doi: 10.1111/j.1432-1033.1994.tb18632.x. [DOI] [PubMed] [Google Scholar]
  4. Brattsand G., Roos G., Marklund U., Ueda H., Landberg G., Nånberg E., Sideras P., Gullberg M. Quantitative analysis of the expression and regulation of an activation-regulated phosphoprotein (oncoprotein 18) in normal and neoplastic cells. Leukemia. 1993 Apr;7(4):569–579. [PubMed] [Google Scholar]
  5. Cole N. B., Lippincott-Schwartz J. Organization of organelles and membrane traffic by microtubules. Curr Opin Cell Biol. 1995 Feb;7(1):55–64. doi: 10.1016/0955-0674(95)80045-x. [DOI] [PubMed] [Google Scholar]
  6. Cruzalegui F. H., Means A. R. Biochemical characterization of the multifunctional Ca2+/calmodulin-dependent protein kinase type IV expressed in insect cells. J Biol Chem. 1993 Dec 15;268(35):26171–26178. [PubMed] [Google Scholar]
  7. Enslen H., Sun P., Brickey D., Soderling S. H., Klamo E., Soderling T. R. Characterization of Ca2+/calmodulin-dependent protein kinase IV. Role in transcriptional regulation. J Biol Chem. 1994 Jun 3;269(22):15520–15527. [PubMed] [Google Scholar]
  8. Groger R. K., Morrow D. M., Tykocinski M. L. Directional antisense and sense cDNA cloning using Epstein-Barr virus episomal expression vectors. Gene. 1989 Sep 30;81(2):285–294. doi: 10.1016/0378-1119(89)90189-3. [DOI] [PubMed] [Google Scholar]
  9. Gullberg M., Noreus K., Brattsand G., Friedrich B., Shingler V. Purification and characterization of a 19-kilodalton intracellular protein. An activation-regulated putative protein kinase C substrate of T lymphocytes. J Biol Chem. 1990 Oct 15;265(29):17499–17505. [PubMed] [Google Scholar]
  10. Hanissian S. H., Frangakis M., Bland M. M., Jawahar S., Chatila T. A. Expression of a Ca2+/calmodulin-dependent protein kinase, CaM kinase-Gr, in human T lymphocytes. Regulation of kinase activity by T cell receptor signaling. J Biol Chem. 1993 Sep 25;268(27):20055–20063. [PubMed] [Google Scholar]
  11. Hanson P. I., Kapiloff M. S., Lou L. L., Rosenfeld M. G., Schulman H. Expression of a multifunctional Ca2+/calmodulin-dependent protein kinase and mutational analysis of its autoregulation. Neuron. 1989 Jul;3(1):59–70. doi: 10.1016/0896-6273(89)90115-3. [DOI] [PubMed] [Google Scholar]
  12. Ho N., Gullberg M., Chatila T. Activation protein 1-dependent transcriptional activation of interleukin 2 gene by Ca2+/calmodulin kinase type IV/Gr. J Exp Med. 1996 Jul 1;184(1):101–112. doi: 10.1084/jem.184.1.101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Huby R. D., Carlile G. W., Ley S. C. Interactions between the protein-tyrosine kinase ZAP-70, the proto-oncoprotein Vav, and tubulin in Jurkat T cells. J Biol Chem. 1995 Dec 22;270(51):30241–30244. doi: 10.1074/jbc.270.51.30241. [DOI] [PubMed] [Google Scholar]
  14. Hyman A. A., Karsenti E. Morphogenetic properties of microtubules and mitotic spindle assembly. Cell. 1996 Feb 9;84(3):401–410. doi: 10.1016/s0092-8674(00)81285-4. [DOI] [PubMed] [Google Scholar]
  15. Joly M., Kazlauskas A., Fay F. S., Corvera S. Disruption of PDGF receptor trafficking by mutation of its PI-3 kinase binding sites. Science. 1994 Feb 4;263(5147):684–687. doi: 10.1126/science.8303278. [DOI] [PubMed] [Google Scholar]
  16. Labdon J. E., Nieves E., Schubart U. K. Analysis of phosphoprotein p19 by liquid chromatography/mass spectrometry. Identification of two proline-directed serine phosphorylation sites and a blocked amino terminus. J Biol Chem. 1992 Feb 15;267(5):3506–3513. [PubMed] [Google Scholar]
  17. Lin S. X., Ferro K. L., Collins C. A. Cytoplasmic dynein undergoes intracellular redistribution concomitant with phosphorylation of the heavy chain in response to serum starvation and okadaic acid. J Cell Biol. 1994 Nov;127(4):1009–1019. doi: 10.1083/jcb.127.4.1009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Liu S., Liu P., Borras A., Chatila T., Speck S. H. Cyclosporin A-sensitive induction of the Epstein-Barr virus lytic switch is mediated via a novel pathway involving a MEF2 family member. EMBO J. 1997 Jan 2;16(1):143–153. doi: 10.1093/emboj/16.1.143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Luo X. N., Mookerjee B., Ferrari A., Mistry S., Atweh G. F. Regulation of phosphoprotein p18 in leukemic cells. Cell cycle regulated phosphorylation by p34cdc2 kinase. J Biol Chem. 1994 Apr 8;269(14):10312–10318. [PubMed] [Google Scholar]
  20. Marklund U., Brattsand G., Osterman O., Ohlsson P. I., Gullberg M. Multiple signal transduction pathways induce phosphorylation of serines 16, 25, and 38 of oncoprotein 18 in T lymphocytes. J Biol Chem. 1993 Dec 5;268(34):25671–25680. [PubMed] [Google Scholar]
  21. Marklund U., Brattsand G., Shingler V., Gullberg M. Serine 25 of oncoprotein 18 is a major cytosolic target for the mitogen-activated protein kinase. J Biol Chem. 1993 Jul 15;268(20):15039–15047. [PubMed] [Google Scholar]
  22. Marklund U., Larsson N., Brattsand G., Osterman O., Chatila T. A., Gullberg M. Serine 16 of oncoprotein 18 is a major cytosolic target for the Ca2+/calmodulin-dependent kinase-Gr. Eur J Biochem. 1994 Oct 1;225(1):53–60. doi: 10.1111/j.1432-1033.1994.00053.x. [DOI] [PubMed] [Google Scholar]
  23. Marklund U., Larsson N., Gradin H. M., Brattsand G., Gullberg M. Oncoprotein 18 is a phosphorylation-responsive regulator of microtubule dynamics. EMBO J. 1996 Oct 1;15(19):5290–5298. [PMC free article] [PubMed] [Google Scholar]
  24. Marklund U., Osterman O., Melander H., Bergh A., Gullberg M. The phenotype of a "Cdc2 kinase target site-deficient" mutant of oncoprotein 18 reveals a role of this protein in cell cycle control. J Biol Chem. 1994 Dec 2;269(48):30626–30635. [PubMed] [Google Scholar]
  25. Matthews R. P., Guthrie C. R., Wailes L. M., Zhao X., Means A. R., McKnight G. S. Calcium/calmodulin-dependent protein kinase types II and IV differentially regulate CREB-dependent gene expression. Mol Cell Biol. 1994 Sep;14(9):6107–6116. doi: 10.1128/mcb.14.9.6107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. McNally F. J. Modulation of microtubule dynamics during the cell cycle. Curr Opin Cell Biol. 1996 Feb;8(1):23–29. doi: 10.1016/s0955-0674(96)80044-5. [DOI] [PubMed] [Google Scholar]
  27. Minotti A. M., Barlow S. B., Cabral F. Resistance to antimitotic drugs in Chinese hamster ovary cells correlates with changes in the level of polymerized tubulin. J Biol Chem. 1991 Feb 25;266(6):3987–3994. [PubMed] [Google Scholar]
  28. Mitchison T., Kirschner M. Dynamic instability of microtubule growth. Nature. 1984 Nov 15;312(5991):237–242. doi: 10.1038/312237a0. [DOI] [PubMed] [Google Scholar]
  29. Miyano O., Kameshita I., Fujisawa H. Purification and characterization of a brain-specific multifunctional calmodulin-dependent protein kinase from rat cerebellum. J Biol Chem. 1992 Jan 15;267(2):1198–1203. [PubMed] [Google Scholar]
  30. Mosialos G., Hanissian S. H., Jawahar S., Vara L., Kieff E., Chatila T. A. A Ca2+/calmodulin-dependent protein kinase, CaM kinase-Gr, expressed after transformation of primary human B lymphocytes by Epstein-Barr virus (EBV) is induced by the EBV oncogene LMP1. J Virol. 1994 Mar;68(3):1697–1705. doi: 10.1128/jvi.68.3.1697-1705.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Nghiem P., Ollick T., Gardner P., Schulman H. Interleukin-2 transcriptional block by multifunctional Ca2+/calmodulin kinase. Nature. 1994 Sep 22;371(6495):347–350. doi: 10.1038/371347a0. [DOI] [PubMed] [Google Scholar]
  32. Nghiem P., Saati S. M., Martens C. L., Gardner P., Schulman H. Cloning and analysis of two new isoforms of multifunctional Ca2+/calmodulin-dependent protein kinase. Expression in multiple human tissues. J Biol Chem. 1993 Mar 15;268(8):5471–5479. [PubMed] [Google Scholar]
  33. Okazaki T., Yoshida B. N., Avraham K. B., Wang H., Wuenschell C. W., Jenkins N. A., Copeland N. G., Anderson D. J., Mori N. Molecular diversity of the SCG10/stathmin gene family in the mouse. Genomics. 1993 Nov;18(2):360–373. doi: 10.1006/geno.1993.1477. [DOI] [PubMed] [Google Scholar]
  34. Planas-Silva M. D., Means A. R. Expression of a constitutive form of calcium/calmodulin dependent protein kinase II leads to arrest of the cell cycle in G2. EMBO J. 1992 Feb;11(2):507–517. doi: 10.1002/j.1460-2075.1992.tb05081.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Sahyoun N., McDonald O. B., Farrell F., Lapetina E. G. Phosphorylation of a Ras-related GTP-binding protein, Rap-1b, by a neuronal Ca2+/calmodulin-dependent protein kinase, CaM kinase Gr. Proc Natl Acad Sci U S A. 1991 Apr 1;88(7):2643–2647. doi: 10.1073/pnas.88.7.2643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Schubart U. K., Yu J., Amat J. A., Wang Z., Hoffmann M. K., Edelmann W. Normal development of mice lacking metablastin (P19), a phosphoprotein implicated in cell cycle regulation. J Biol Chem. 1996 Jun 14;271(24):14062–14066. doi: 10.1074/jbc.271.24.14062. [DOI] [PubMed] [Google Scholar]
  37. Shinohara-Gotoh Y., Nishida E., Hoshi M., Sakai H. Activation of microtubule-associated protein kinase by microtubule disruption in quiescent rat 3Y1 cells. Exp Cell Res. 1991 Mar;193(1):161–166. doi: 10.1016/0014-4827(91)90551-5. [DOI] [PubMed] [Google Scholar]
  38. Sun P., Enslen H., Myung P. S., Maurer R. A. Differential activation of CREB by Ca2+/calmodulin-dependent protein kinases type II and type IV involves phosphorylation of a site that negatively regulates activity. Genes Dev. 1994 Nov 1;8(21):2527–2539. doi: 10.1101/gad.8.21.2527. [DOI] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES