Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1997 Jul;17(7):3556–3565. doi: 10.1128/mcb.17.7.3556

Differential regulation of the mitogen-activated protein and stress-activated protein kinase cascades by adrenergic agonists in quiescent and regenerating adult rat hepatocytes.

M S Spector 1, K L Auer 1, W D Jarvis 1, E J Ishac 1, B Gao 1, G Kunos 1, P Dent 1
PMCID: PMC232209  PMID: 9199291

Abstract

To study the mechanisms by which catecholamines regulate hepatocyte proliferation after partial hepatectomy (PHX), hepatocytes were isolated from adult male rats 24 h after sham operation or two-thirds PHX and treated with catecholamines and other agonists. In freshly isolated sham cells, p42 mitogen-activated protein (MAP) kinase activity was stimulated by the alpha1-adrenergic agonist phenylephrine (PHE). Activation of p42 MAP kinase by growth factors was blunted by pretreatment of sham hepatocytes with glucagon but not by that with the beta2-adrenergic agonist isoproterenol (ISO). In PHX cells, the ability of PHE to activate p42 MAP kinase was dramatically reduced, whereas ISO became competent to inhibit p42 MAP kinase activation. PHE treatment of sham but not PHX and ISO treatment of PHX but not sham hepatocytes also activated the stress-activated protein (SAP) kinases p46/54 SAP kinase and p38 SAP kinase. These data demonstrate that an alpha1- to beta2-adrenergic receptor switch occurs upon PHX and results in an increase in SAP kinase versus MAP kinase signaling by catecholamines. In primary cultures of hepatocytes, ISO treatment of PHX but not sham cells inhibited [3H]thymidine incorporation. In contrast, PHE treatment of sham but not PHX cells stimulated [3H]thymidine incorporation, which was reduced by approximately 25 and approximately 95% with specific inhibitors of p42 MAP kinase and p38 SAP kinase function, respectively. Inhibition of the p38 SAP kinase also dramatically reduced basal [3H]thymidine incorporation. These data suggest that p38 SAP kinase plays a permissive role in liver regeneration. Alterations in the abilities of catecholamines to modulate the activities of protein kinase A and the MAP and SAP kinase pathways may represent one physiological mechanism by which these agonists can regulate hepatocyte proliferation after PHX.

Full Text

The Full Text of this article is available as a PDF (384.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beer D. G., Neveu M. J., Paul D. L., Rapp U. R., Pitot H. C. Expression of the c-raf protooncogene, gamma-glutamyltranspeptidase, and gap junction protein in rat liver neoplasms. Cancer Res. 1988 Mar 15;48(6):1610–1617. [PubMed] [Google Scholar]
  2. Beltman J., McCormick F., Cook S. J. The selective protein kinase C inhibitor, Ro-31-8220, inhibits mitogen-activated protein kinase phosphatase-1 (MKP-1) expression, induces c-Jun expression, and activates Jun N-terminal kinase. J Biol Chem. 1996 Oct 25;271(43):27018–27024. doi: 10.1074/jbc.271.43.27018. [DOI] [PubMed] [Google Scholar]
  3. Beyaert R., Cuenda A., Vanden Berghe W., Plaisance S., Lee J. C., Haegeman G., Cohen P., Fiers W. The p38/RK mitogen-activated protein kinase pathway regulates interleukin-6 synthesis response to tumor necrosis factor. EMBO J. 1996 Apr 15;15(8):1914–1923. [PMC free article] [PubMed] [Google Scholar]
  4. Bogoyevitch M. A., Gillespie-Brown J., Ketterman A. J., Fuller S. J., Ben-Levy R., Ashworth A., Marshall C. J., Sugden P. H. Stimulation of the stress-activated mitogen-activated protein kinase subfamilies in perfused heart. p38/RK mitogen-activated protein kinases and c-Jun N-terminal kinases are activated by ischemia/reperfusion. Circ Res. 1996 Aug;79(2):162–173. doi: 10.1161/01.res.79.2.162. [DOI] [PubMed] [Google Scholar]
  5. Chapple C. R. Selective alpha 1-adrenoceptor antagonists in benign prostatic hyperplasia: rationale and clinical experience. Eur Urol. 1996;29(2):129–144. [PubMed] [Google Scholar]
  6. Chou M. M., Blenis J. The 70 kDa S6 kinase complexes with and is activated by the Rho family G proteins Cdc42 and Rac1. Cell. 1996 May 17;85(4):573–583. doi: 10.1016/s0092-8674(00)81257-x. [DOI] [PubMed] [Google Scholar]
  7. Crespo P., Cachero T. G., Xu N., Gutkind J. S. Dual effect of beta-adrenergic receptors on mitogen-activated protein kinase. Evidence for a beta gamma-dependent activation and a G alpha s-cAMP-mediated inhibition. J Biol Chem. 1995 Oct 20;270(42):25259–25265. doi: 10.1074/jbc.270.42.25259. [DOI] [PubMed] [Google Scholar]
  8. Cressman D. E., Greenbaum L. E., DeAngelis R. A., Ciliberto G., Furth E. E., Poli V., Taub R. Liver failure and defective hepatocyte regeneration in interleukin-6-deficient mice. Science. 1996 Nov 22;274(5291):1379–1383. doi: 10.1126/science.274.5291.1379. [DOI] [PubMed] [Google Scholar]
  9. Cuenda A., Rouse J., Doza Y. N., Meier R., Cohen P., Gallagher T. F., Young P. R., Lee J. C. SB 203580 is a specific inhibitor of a MAP kinase homologue which is stimulated by cellular stresses and interleukin-1. FEBS Lett. 1995 May 8;364(2):229–233. doi: 10.1016/0014-5793(95)00357-f. [DOI] [PubMed] [Google Scholar]
  10. Dent P., Haser W., Haystead T. A., Vincent L. A., Roberts T. M., Sturgill T. W. Activation of mitogen-activated protein kinase kinase by v-Raf in NIH 3T3 cells and in vitro. Science. 1992 Sep 4;257(5075):1404–1407. doi: 10.1126/science.1326789. [DOI] [PubMed] [Google Scholar]
  11. Dent P., Reardon D. B., Morrison D. K., Sturgill T. W. Regulation of Raf-1 and Raf-1 mutants by Ras-dependent and Ras-independent mechanisms in vitro. Mol Cell Biol. 1995 Aug;15(8):4125–4135. doi: 10.1128/mcb.15.8.4125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Diehl A. M., Rai R. M. Liver regeneration 3: Regulation of signal transduction during liver regeneration. FASEB J. 1996 Feb;10(2):215–227. doi: 10.1096/fasebj.10.2.8641555. [DOI] [PubMed] [Google Scholar]
  13. Diehl A. M., Yang S. Q., Wolfgang D., Wand G. Differential expression of guanine nucleotide-binding proteins enhances cAMP synthesis in regenerating rat liver. J Clin Invest. 1992 Jun;89(6):1706–1712. doi: 10.1172/JCI115771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Diehl A. M., Yang S. Q., Yin M., Lin H. Z., Nelson S., Bagby G. Tumor necrosis factor-alpha modulates CCAAT/enhancer binding proteins-DNA binding activities and promotes hepatocyte-specific gene expression during liver regeneration. Hepatology. 1995 Jul;22(1):252–261. doi: 10.1016/0270-9139(95)90379-8. [DOI] [PubMed] [Google Scholar]
  15. Fabian J. R., Daar I. O., Morrison D. K. Critical tyrosine residues regulate the enzymatic and biological activity of Raf-1 kinase. Mol Cell Biol. 1993 Nov;13(11):7170–7179. doi: 10.1128/mcb.13.11.7170. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Fang X. J., Keating A., Flowers M., Liew C. C., Gupta H., Mills G. B., Sherman M. The v-raf oncogene enhances tumorigenicity and suppresses differentiation in vivo in a rat hepatocyte cell line. Carcinogenesis. 1993 Apr;14(4):669–674. doi: 10.1093/carcin/14.4.669. [DOI] [PubMed] [Google Scholar]
  17. Ginès P., Li X., Zamarripa J. L., Brown S. E., Wieder E. D., Nakamura T., Guzelian P. S., Schrier R. W., Heasley L. E., Nemenoff R. A. Tyrosine kinase growth factor receptors but not seven-membrane-spanning receptors or phorbol esters activate mitogen-activated protein kinase in rat hepatocytes. Hepatology. 1995 Oct;22(4 Pt 1):1296–1303. [PubMed] [Google Scholar]
  18. Grant S., Freemerman A. J., Birrer M. J., Martin H. A., Turner A. J., Szabo E., Chelliah J., Jarvis W. D. Effect of 1-beta-D-arabinofuranosylcytosine on apoptosis and differentiation in human monocytic leukemia cells (U937) expressing a c-Jun dominant-negative mutant protein (TAM67). Cell Growth Differ. 1996 May;7(5):603–613. [PubMed] [Google Scholar]
  19. Grant S., Jarvis W. D. Modulation of drug-induced apoptosis by interruption of the protein kinase C signal transduction pathway: a new therapeutic strategy. Clin Cancer Res. 1996 Dec;2(12):1915–1920. [PubMed] [Google Scholar]
  20. Grieco D., Porcellini A., Avvedimento E. V., Gottesman M. E. Requirement for cAMP-PKA pathway activation by M phase-promoting factor in the transition from mitosis to interphase. Science. 1996 Mar 22;271(5256):1718–1723. doi: 10.1126/science.271.5256.1718. [DOI] [PubMed] [Google Scholar]
  21. Hawes B. E., van Biesen T., Koch W. J., Luttrell L. M., Lefkowitz R. J. Distinct pathways of Gi- and Gq-mediated mitogen-activated protein kinase activation. J Biol Chem. 1995 Jul 21;270(29):17148–17153. doi: 10.1074/jbc.270.29.17148. [DOI] [PubMed] [Google Scholar]
  22. Hu Z. W., Shi X. Y., Lin R. Z., Hoffman B. B. Alpha1 adrenergic receptors activate phosphatidylinositol 3-kinase in human vascular smooth muscle cells. Role in mitogenesis. J Biol Chem. 1996 Apr 12;271(15):8977–8982. doi: 10.1074/jbc.271.15.8977. [DOI] [PubMed] [Google Scholar]
  23. Ishac E. J., Lazar-Wesley E., Kunos G. Rapid inverse changes in alpha 1B- and beta 2-adrenergic receptors and gene transcripts in acutely isolated rat liver cells. J Cell Physiol. 1992 Jul;152(1):79–86. doi: 10.1002/jcp.1041520111. [DOI] [PubMed] [Google Scholar]
  24. Jelinek T., Dent P., Sturgill T. W., Weber M. J. Ras-induced activation of Raf-1 is dependent on tyrosine phosphorylation. Mol Cell Biol. 1996 Mar;16(3):1027–1034. doi: 10.1128/mcb.16.3.1027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kolch W., Heidecker G., Lloyd P., Rapp U. R. Raf-1 protein kinase is required for growth of induced NIH/3T3 cells. Nature. 1991 Jan 31;349(6308):426–428. doi: 10.1038/349426a0. [DOI] [PubMed] [Google Scholar]
  26. Kunos G., Ishac E. J., Gao B., Jiang L. Inverse regulation of hepatic alpha 1B- and beta 2-adrenergic receptors. Cellular mechanisms and physiological implications. Ann N Y Acad Sci. 1995 May 10;757:261–271. doi: 10.1111/j.1749-6632.1995.tb17483.x. [DOI] [PubMed] [Google Scholar]
  27. Lin T. A., Kong X., Haystead T. A., Pause A., Belsham G., Sonenberg N., Lawrence J. C., Jr PHAS-I as a link between mitogen-activated protein kinase and translation initiation. Science. 1994 Oct 28;266(5185):653–656. doi: 10.1126/science.7939721. [DOI] [PubMed] [Google Scholar]
  28. Loyer P., Cariou S., Glaise D., Bilodeau M., Baffet G., Guguen-Guillouzo C. Growth factor dependence of progression through G1 and S phases of adult rat hepatocytes in vitro. Evidence of a mitogen restriction point in mid-late G1. J Biol Chem. 1996 May 10;271(19):11484–11492. doi: 10.1074/jbc.271.19.11484. [DOI] [PubMed] [Google Scholar]
  29. McConkey D. J., Jondal M., Orrenius S. Cellular signaling in thymocyte apoptosis. Semin Immunol. 1992 Dec;4(6):371–377. [PubMed] [Google Scholar]
  30. Mendelson K. G., Contois L. R., Tevosian S. G., Davis R. J., Paulson K. E. Independent regulation of JNK/p38 mitogen-activated protein kinases by metabolic oxidative stress in the liver. Proc Natl Acad Sci U S A. 1996 Nov 12;93(23):12908–12913. doi: 10.1073/pnas.93.23.12908. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Michalopoulos G. K. Liver regeneration: molecular mechanisms of growth control. FASEB J. 1990 Feb 1;4(2):176–187. [PubMed] [Google Scholar]
  32. Preiksaitis H. G., Kan W. H., Kunos G. Decreased alpha 1-adrenoceptor responsiveness and density in liver cells of thyroidectomized rats. J Biol Chem. 1982 Apr 25;257(8):4321–4327. [PubMed] [Google Scholar]
  33. Refsnes M., Thoresen G. H., Sandnes D., Dajani O. F., Dajani L., Christoffersen T. Stimulatory and inhibitory effects of catecholamines on DNA synthesis in primary rat hepatocyte cultures: role of alpha 1- and beta-adrenergic mechanisms. J Cell Physiol. 1992 Apr;151(1):164–171. doi: 10.1002/jcp.1041510121. [DOI] [PubMed] [Google Scholar]
  34. Reuter C. W., Catling A. D., Jelinek T., Weber M. J. Biochemical analysis of MEK activation in NIH3T3 fibroblasts. Identification of B-Raf and other activators. J Biol Chem. 1995 Mar 31;270(13):7644–7655. doi: 10.1074/jbc.270.13.7644. [DOI] [PubMed] [Google Scholar]
  35. Roesler W. J., Crosson S. M., Vinson C., McFie P. J. The alpha-isoform of the CCAAT/enhancer-binding protein is required for mediating cAMP responsiveness of the phosphoenolpyruvate carboxykinase promoter in hepatoma cells. J Biol Chem. 1996 Apr 5;271(14):8068–8074. doi: 10.1074/jbc.271.14.8068. [DOI] [PubMed] [Google Scholar]
  36. Rosette C., Karin M. Ultraviolet light and osmotic stress: activation of the JNK cascade through multiple growth factor and cytokine receptors. Science. 1996 Nov 15;274(5290):1194–1197. doi: 10.1126/science.274.5290.1194. [DOI] [PubMed] [Google Scholar]
  37. Sandnes D., Sand T. E., Sager G., Brønstad G. O., Refsnes M. R., Gladhaug I. P., Jacobsen S., Christoffersen T. Elevated level of beta-adrenergic receptors in hepatocytes from regenerating rat liver. Time study of [125I]iodocyanopindolol binding following partial hepatectomy and its relationship to catecholamine-sensitive adenylate cyclase. Exp Cell Res. 1986 Jul;165(1):117–126. doi: 10.1016/0014-4827(86)90537-9. [DOI] [PubMed] [Google Scholar]
  38. Sevetson B. R., Kong X., Lawrence J. C., Jr Increasing cAMP attenuates activation of mitogen-activated protein kinase. Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):10305–10309. doi: 10.1073/pnas.90.21.10305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Stanton V. P., Jr, Nichols D. W., Laudano A. P., Cooper G. M. Definition of the human raf amino-terminal regulatory region by deletion mutagenesis. Mol Cell Biol. 1989 Feb;9(2):639–647. doi: 10.1128/mcb.9.2.639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Storm S. M., Cleveland J. L., Rapp U. R. Expression of raf family proto-oncogenes in normal mouse tissues. Oncogene. 1990 Mar;5(3):345–351. [PubMed] [Google Scholar]
  41. Tao J., Sanghera J. S., Pelech S. L., Wong G., Levy J. G. Stimulation of stress-activated protein kinase and p38 HOG1 kinase in murine keratinocytes following photodynamic therapy with benzoporphyrin derivative. J Biol Chem. 1996 Oct 25;271(43):27107–27115. doi: 10.1074/jbc.271.43.27107. [DOI] [PubMed] [Google Scholar]
  42. Verheij M., Bose R., Lin X. H., Yao B., Jarvis W. D., Grant S., Birrer M. J., Szabo E., Zon L. I., Kyriakis J. M. Requirement for ceramide-initiated SAPK/JNK signalling in stress-induced apoptosis. Nature. 1996 Mar 7;380(6569):75–79. doi: 10.1038/380075a0. [DOI] [PubMed] [Google Scholar]
  43. Ware J. L. Growth factors and their receptors as determinants in the proliferation and metastasis of human prostate cancer. Cancer Metastasis Rev. 1993 Sep;12(3-4):287–301. doi: 10.1007/BF00665959. [DOI] [PubMed] [Google Scholar]
  44. Wu J., Dent P., Jelinek T., Wolfman A., Weber M. J., Sturgill T. W. Inhibition of the EGF-activated MAP kinase signaling pathway by adenosine 3',5'-monophosphate. Science. 1993 Nov 12;262(5136):1065–1069. doi: 10.1126/science.7694366. [DOI] [PubMed] [Google Scholar]
  45. Xia Z., Dickens M., Raingeaud J., Davis R. J., Greenberg M. E. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science. 1995 Nov 24;270(5240):1326–1331. doi: 10.1126/science.270.5240.1326. [DOI] [PubMed] [Google Scholar]
  46. Xing M., Insel P. A. Protein kinase C-dependent activation of cytosolic phospholipase A2 and mitogen-activated protein kinase by alpha 1-adrenergic receptors in Madin-Darby canine kidney cells. J Clin Invest. 1996 Mar 1;97(5):1302–1310. doi: 10.1172/JCI118546. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Yao B., Zhang Y., Delikat S., Mathias S., Basu S., Kolesnick R. Phosphorylation of Raf by ceramide-activated protein kinase. Nature. 1995 Nov 16;378(6554):307–310. doi: 10.1038/378307a0. [DOI] [PubMed] [Google Scholar]
  48. Zhang S., Han J., Sells M. A., Chernoff J., Knaus U. G., Ulevitch R. J., Bokoch G. M. Rho family GTPases regulate p38 mitogen-activated protein kinase through the downstream mediator Pak1. J Biol Chem. 1995 Oct 13;270(41):23934–23936. doi: 10.1074/jbc.270.41.23934. [DOI] [PubMed] [Google Scholar]
  49. Zhang Y. Q., Kanzaki M., Mashima H., Mine T., Kojima I. Norepinephrine reverses the effects of activin A on DNA synthesis and apoptosis in cultured rat hepatocytes. Hepatology. 1996 Feb;23(2):288–293. doi: 10.1002/hep.510230214. [DOI] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES