Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1997 Jul;17(7):3858–3866. doi: 10.1128/mcb.17.7.3858

DNA elements regulating alpha1-tubulin gene induction during regeneration of eukaryotic flagella.

G Periz 1, L R Keller 1
PMCID: PMC232238  PMID: 9199320

Abstract

Eukaryotic flagella are complex organelles composed of more than 200 polypeptides. Little is known about the regulatory mechanisms governing synthesis of the flagellar protein subunits and their assembly into this complex organelle. The unicellular green alga Chlamydomonas reinhardtii is the premier experimental model system for studying such cellular processes. When acid shocked, C. reinhardtii excises its flagella, rapidly and coordinately activates transcription of a set of flagellar genes, and ultimately regenerates a new flagellar pair. To define functionally the regulatory sequences that govern induction of the set of genes after acid shock, we analyzed the alpha1-tubulin gene promoter. To simplify transcriptional analysis in vivo, we inserted the selectable marker gene ARG7 on the same plasmid with a tagged alpha1-tubulin gene and stably introduced it into C. reinhardtii cells. By deletion of various sequences, two promoter regions (-176 to -122 and -85 to -16) were identified as important for induction of the tagged alpha1-tubulin gene. Deleting the region between -176 and -122 from the transcription start site resulted in an induction level which was only 45 to 70% of that of the resident gene. Deleting the region upstream of -56 resulted in a complete loss of inducibility without affecting basal expression. The alpha1-tubulin promoter region from -85 to -16 conferred partial acid shock inducibility to an arylsulfatase (ARS) reporter gene. These results show that induction of the alpha1-tubulin gene after acid shock is a complex response that requires diverse sequence elements.

Full Text

The Full Text of this article is available as a PDF (450.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baker E. J., Schloss J. A., Rosenbaum J. L. Rapid changes in tubulin RNA synthesis and stability induced by deflagellation in Chlamydomonas. J Cell Biol. 1984 Dec;99(6):2074–2081. doi: 10.1083/jcb.99.6.2074. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baker E. J. Tubulin mRNA instability and stabilization by protein synthesis inhibitors are reproducible in nontranslating extracts from Chlamydomonas. Dev Genet. 1993;14(6):460–470. doi: 10.1002/dvg.1020140607. [DOI] [PubMed] [Google Scholar]
  3. Bandziulis R. J., Rosenbaum J. L. Novel control elements in the alpha-1 tubulin gene promoter from Chlamydomonas reinhardii. Mol Gen Genet. 1988 Oct;214(2):204–212. doi: 10.1007/BF00337712. [DOI] [PubMed] [Google Scholar]
  4. Bhaumik D., Yang B., Trangas T., Bartlett J. S., Coleman M. S., Sorscher D. H. Identification of a tripartite basal promoter which regulates human terminal deoxynucleotidyl transferase gene expression. J Biol Chem. 1994 Jun 3;269(22):15861–15867. [PubMed] [Google Scholar]
  5. Blankenship J. E., Kindle K. L. Expression of chimeric genes by the light-regulated cabII-1 promoter in Chlamydomonas reinhardtii: a cabII-1/nit1 gene functions as a dominant selectable marker in a nit1- nit2- strain. Mol Cell Biol. 1992 Nov;12(11):5268–5279. doi: 10.1128/mcb.12.11.5268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brunke K. J., Anthony J. G., Sternberg E. J., Weeks D. P. Repeated consensus sequence and pseudopromoters in the four coordinately regulated tubulin genes of Chlamydomonas reinhardi. Mol Cell Biol. 1984 Jun;4(6):1115–1124. doi: 10.1128/mcb.4.6.1115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Burke T. W., Kadonaga J. T. Drosophila TFIID binds to a conserved downstream basal promoter element that is present in many TATA-box-deficient promoters. Genes Dev. 1996 Mar 15;10(6):711–724. doi: 10.1101/gad.10.6.711. [DOI] [PubMed] [Google Scholar]
  8. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  9. Davies J. P., Grossman A. R. Sequences controlling transcription of the Chlamydomonas reinhardtii beta 2-tubulin gene after deflagellation and during the cell cycle. Mol Cell Biol. 1994 Aug;14(8):5165–5174. doi: 10.1128/mcb.14.8.5165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Davies J. P., Weeks D. P., Grossman A. R. Expression of the arylsulfatase gene from the beta 2-tubulin promoter in Chlamydomonas reinhardtii. Nucleic Acids Res. 1992 Jun 25;20(12):2959–2965. doi: 10.1093/nar/20.12.2959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Debuchy R., Purton S., Rochaix J. D. The argininosuccinate lyase gene of Chlamydomonas reinhardtii: an important tool for nuclear transformation and for correlating the genetic and molecular maps of the ARG7 locus. EMBO J. 1989 Oct;8(10):2803–2809. doi: 10.1002/j.1460-2075.1989.tb08426.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Dynan W. S., Sazer S., Tjian R., Schimke R. T. Transcription factor Sp1 recognizes a DNA sequence in the mouse dihydrofolate reductase promoter. Nature. 1986 Jan 16;319(6050):246–248. doi: 10.1038/319246a0. [DOI] [PubMed] [Google Scholar]
  13. Evans J. H., Keller L. R. Calcium influx signals normal flagellar RNA induction following acid shock of Chlamydomonas reinhardtii. Plant Mol Biol. 1997 Feb;33(3):467–481. doi: 10.1023/a:1005727806897. [DOI] [PubMed] [Google Scholar]
  14. Gillham N. W. Induction of chromosomal and nonchromosomal mutations in Chlamydomonas reinhardi with N-methyl-N'-nitro-N-nitrosoguanidine. Genetics. 1965 Sep;52(3):529–537. doi: 10.1093/genetics/52.3.529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Goldschmidt-Clermont M., Rahire M. Sequence, evolution and differential expression of the two genes encoding variant small subunits of ribulose bisphosphate carboxylase/oxygenase in Chlamydomonas reinhardtii. J Mol Biol. 1986 Oct 5;191(3):421–432. doi: 10.1016/0022-2836(86)90137-3. [DOI] [PubMed] [Google Scholar]
  16. Hod Y. A simplified ribonuclease protection assay. Biotechniques. 1992 Dec;13(6):852–854. [PubMed] [Google Scholar]
  17. Jacobson A., Peltz S. W. Interrelationships of the pathways of mRNA decay and translation in eukaryotic cells. Annu Rev Biochem. 1996;65:693–739. doi: 10.1146/annurev.bi.65.070196.003401. [DOI] [PubMed] [Google Scholar]
  18. Kashanchi F., Duvall J. F., Dittmer J., Mireskandari A., Reid R. L., Gitlin S. D., Brady J. N. Involvement of transcription factor YB-1 in human T-cell lymphotropic virus type I basal gene expression. J Virol. 1994 Jan;68(1):561–565. doi: 10.1128/jvi.68.1.561-565.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Keller L. R., Schloss J. A., Silflow C. D., Rosenbaum J. L. Transcription of alpha- and beta-tubulin genes in vitro in isolated Chlamydomonas reinhardi nuclei. J Cell Biol. 1984 Mar;98(3):1138–1143. doi: 10.1083/jcb.98.3.1138. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kindle K. L. High-frequency nuclear transformation of Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A. 1990 Feb;87(3):1228–1232. doi: 10.1073/pnas.87.3.1228. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kogan P. H., Chen X., Blissard G. W. Overlapping TATA-dependent and TATA-independent early promoter activities in the baculovirus gp64 envelope fusion protein gene. J Virol. 1995 Mar;69(3):1452–1461. doi: 10.1128/jvi.69.3.1452-1461.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lefebvre P. A., Rosenbaum J. L. Regulation of the synthesis and assembly of ciliary and flagellar proteins during regeneration. Annu Rev Cell Biol. 1986;2:517–546. doi: 10.1146/annurev.cb.02.110186.002505. [DOI] [PubMed] [Google Scholar]
  23. Lefebvre P. A., Silflow C. D., Wieben E. D., Rosenbaum J. L. Increased levels of mRNAs for tubulin and other flagellar proteins after amputation or shortening of Chlamydomonas flagella. Cell. 1980 Jun;20(2):469–477. doi: 10.1016/0092-8674(80)90633-9. [DOI] [PubMed] [Google Scholar]
  24. Mages W., Cresnar B., Harper J. F., Brüderlein M., Schmitt R. Volvox carteri alpha 2- and beta 2-tubulin-encoding genes: regulatory signals and transcription. Gene. 1995 Jul 4;160(1):47–54. doi: 10.1016/0378-1119(95)00178-9. [DOI] [PubMed] [Google Scholar]
  25. Martin D. I., Whitelaw E. The vagaries of variegating transgenes. Bioessays. 1996 Nov;18(11):919–923. doi: 10.1002/bies.950181111. [DOI] [PubMed] [Google Scholar]
  26. Martinez E., Zhou Q., L'Etoile N. D., Oelgeschläger T., Berk A. J., Roeder R. G. Core promoter-specific function of a mutant transcription factor TFIID defective in TATA-box binding. Proc Natl Acad Sci U S A. 1995 Dec 5;92(25):11864–11868. doi: 10.1073/pnas.92.25.11864. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Minami S. A., Collis P. S., Young E. E., Weeks D. P. Tubulin induction in C. reinhardii: requirement for tubulin mRNA synthesis. Cell. 1981 Apr;24(1):89–95. doi: 10.1016/0092-8674(81)90504-3. [DOI] [PubMed] [Google Scholar]
  28. Quinn J. M., Merchant S. Two copper-responsive elements associated with the Chlamydomonas Cyc6 gene function as targets for transcriptional activators. Plant Cell. 1995 May;7(5):623–628. doi: 10.1105/tpc.7.5.623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. SAGER R., GRANICK S. Nutritional studies with Chlamydomonas reinhardi. Ann N Y Acad Sci. 1953 Oct 14;56(5):831–838. doi: 10.1111/j.1749-6632.1953.tb30261.x. [DOI] [PubMed] [Google Scholar]
  30. Schloss J. A. A Chlamydomonas gene encodes a G protein beta subunit-like polypeptide. Mol Gen Genet. 1990 May;221(3):443–452. doi: 10.1007/BF00259410. [DOI] [PubMed] [Google Scholar]
  31. Schloss J. A., Silflow C. D., Rosenbaum J. L. mRNA abundance changes during flagellar regeneration in Chlamydomonas reinhardtii. Mol Cell Biol. 1984 Mar;4(3):424–434. doi: 10.1128/mcb.4.3.424. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Silflow C. D., Chisholm R. L., Conner T. W., Ranum L. P. The two alpha-tubulin genes of Chlamydomonas reinhardi code for slightly different proteins. Mol Cell Biol. 1985 Sep;5(9):2389–2398. doi: 10.1128/mcb.5.9.2389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Silflow C. D., Rosenbaum J. L. Multiple alpha- and beta-tubulin genes in Chlamydomonas and regulation of tubulin mRNA levels after deflagellation. Cell. 1981 Apr;24(1):81–88. doi: 10.1016/0092-8674(81)90503-1. [DOI] [PubMed] [Google Scholar]
  34. Weeks D. P., Collis P., Gealt M. A. Control of induction of tubulin synthesis in Chlamydomonas reinhardi. Nature. 1977 Aug 18;268(5621):667–668. doi: 10.1038/268667a0. [DOI] [PubMed] [Google Scholar]
  35. Wolfertstetter F., Frech K., Herrmann G., Werner T. Identification of functional elements in unaligned nucleic acid sequences by a novel tuple search algorithm. Comput Appl Biosci. 1996 Feb;12(1):71–80. doi: 10.1093/bioinformatics/12.1.71. [DOI] [PubMed] [Google Scholar]
  36. Yamada T., Maki S., Higashiyama T. Nucleotide sequence of a Chlorella vulgaris alpha-tubulin gene. Plant Physiol. 1993 Dec;103(4):1467–1467. doi: 10.1104/pp.103.4.1467. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES