Abstract
A distinct population of therapy-related acute myeloid leukemia (t-AML) is strongly associated with prior administration of topoisomerase II (topo II) inhibitors. These t-AMLs display distinct cytogenetic alterations, most often disrupting the MLL gene on chromosome 11q23 within a breakpoint cluster region (bcr) of 8.3 kb. We recently identified a unique site within the MLL bcr that is highly susceptible to DNA double-strand cleavage by classic topo II inhibitors (e.g., etoposide and doxorubicin). Here, we report that site-specific cleavage within the MLL bcr can be induced by either catalytic topo II inhibitors, genotoxic chemotherapeutic agents which do not target topo II, or nongenotoxic stimuli of apoptotic cell death, suggesting that this site-specific cleavage is part of a generalized cellular response to an apoptotic stimulus. We also show that site-specific cleavage within the MLL bcr can be linked to the higher-order chromatin fragmentation that occurs during the initial stages of apoptosis, possibly through cleavage of DNA loops at their anchorage sites to the nuclear matrix. In addition, we show that site-specific cleavage is conserved between species, as specific DNA cleavage can also be demonstrated within the murine MLL locus. Lastly, site-specific cleavage during apoptosis can also be identified at the AML1 locus, a locus which is also frequently involved in chromosomal rearrangements present in t-AML patients. In conclusion, these results suggest the potential involvement of higher-order chromatin fragmentation which occurs as a part of a generalized apoptotic response in a mechanism leading to chromosomal translocation of the MLL and AML1 genes and subsequent t-AML.
Full Text
The Full Text of this article is available as a PDF (2.4 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adachi Y., Käs E., Laemmli U. K. Preferential, cooperative binding of DNA topoisomerase II to scaffold-associated regions. EMBO J. 1989 Dec 20;8(13):3997–4006. doi: 10.1002/j.1460-2075.1989.tb08582.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Adams J. M., Cory S. Transgenic models of tumor development. Science. 1991 Nov 22;254(5035):1161–1167. doi: 10.1126/science.1957168. [DOI] [PubMed] [Google Scholar]
- Aplan P. D., Begley C. G., Bertness V., Nussmeier M., Ezquerra A., Coligan J., Kirsch I. R. The SCL gene is formed from a transcriptionally complex locus. Mol Cell Biol. 1990 Dec;10(12):6426–6435. doi: 10.1128/mcb.10.12.6426. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Aplan P. D., Chervinsky D. S., Stanulla M., Burhans W. C. Site-specific DNA cleavage within the MLL breakpoint cluster region induced by topoisomerase II inhibitors. Blood. 1996 Apr 1;87(7):2649–2658. [PubMed] [Google Scholar]
- Aplan P. D., Lombardi D. P., Ginsberg A. M., Cossman J., Bertness V. L., Kirsch I. R. Disruption of the human SCL locus by "illegitimate" V-(D)-J recombinase activity. Science. 1990 Dec 7;250(4986):1426–1429. doi: 10.1126/science.2255914. [DOI] [PubMed] [Google Scholar]
- Beck W. T., Danks M. K. Mechanisms of resistance to drugs that inhibit DNA topoisomerases. Semin Cancer Biol. 1991 Aug;2(4):235–244. [PubMed] [Google Scholar]
- Beere H. M., Chresta C. M., Alejo-Herberg A., Skladanowski A., Dive C., Larsen A. K., Hickman J. A. Investigation of the mechanism of higher order chromatin fragmentation observed in drug-induced apoptosis. Mol Pharmacol. 1995 May;47(5):986–996. [PubMed] [Google Scholar]
- Berezney R., Coffey D. S. Identification of a nuclear protein matrix. Biochem Biophys Res Commun. 1974 Oct 23;60(4):1410–1417. doi: 10.1016/0006-291x(74)90355-6. [DOI] [PubMed] [Google Scholar]
- Bishop J. M. Cancer: the rise of the genetic paradigm. Genes Dev. 1995 Jun 1;9(11):1309–1315. doi: 10.1101/gad.9.11.1309. [DOI] [PubMed] [Google Scholar]
- Bortner C. D., Oldenburg N. B., Cidlowski J. A. The role of DNA fragmentation in apoptosis. Trends Cell Biol. 1995 Jan;5(1):21–26. doi: 10.1016/s0962-8924(00)88932-1. [DOI] [PubMed] [Google Scholar]
- Broeker P. L., Super H. G., Thirman M. J., Pomykala H., Yonebayashi Y., Tanabe S., Zeleznik-Le N., Rowley J. D. Distribution of 11q23 breakpoints within the MLL breakpoint cluster region in de novo acute leukemia and in treatment-related acute myeloid leukemia: correlation with scaffold attachment regions and topoisomerase II consensus binding sites. Blood. 1996 Mar 1;87(5):1912–1922. [PubMed] [Google Scholar]
- Catchpoole D. R., Stewart B. W. Etoposide-induced cytotoxicity in two human T-cell leukemic lines: delayed loss of membrane permeability rather than DNA fragmentation as an indicator of programmed cell death. Cancer Res. 1993 Sep 15;53(18):4287–4296. [PubMed] [Google Scholar]
- Chen M., Beck W. T. Teniposide-resistant CEM cells, which express mutant DNA topoisomerase II alpha, when treated with non-complex-stabilizing inhibitors of the enzyme, display no cross-resistance and reveal aberrant functions of the mutant enzyme. Cancer Res. 1993 Dec 15;53(24):5946–5953. [PubMed] [Google Scholar]
- Cifone M. G., De Maria R., Roncaioli P., Rippo M. R., Azuma M., Lanier L. L., Santoni A., Testi R. Apoptotic signaling through CD95 (Fas/Apo-1) activates an acidic sphingomyelinase. J Exp Med. 1994 Oct 1;180(4):1547–1552. doi: 10.1084/jem.180.4.1547. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cline M. J. The molecular basis of leukemia. N Engl J Med. 1994 Feb 3;330(5):328–336. doi: 10.1056/NEJM199402033300507. [DOI] [PubMed] [Google Scholar]
- Cockerill P. N., Garrard W. T. Chromosomal loop anchorage of the kappa immunoglobulin gene occurs next to the enhancer in a region containing topoisomerase II sites. Cell. 1986 Jan 31;44(2):273–282. doi: 10.1016/0092-8674(86)90761-0. [DOI] [PubMed] [Google Scholar]
- Cockerill P. N., Garrard W. T. Chromosomal loop anchorage sites appear to be evolutionarily conserved. FEBS Lett. 1986 Aug 11;204(1):5–7. doi: 10.1016/0014-5793(86)81377-1. [DOI] [PubMed] [Google Scholar]
- Danks M. K., Schmidt C. A., Cirtain M. C., Suttle D. P., Beck W. T. Altered catalytic activity of and DNA cleavage by DNA topoisomerase II from human leukemic cells selected for resistance to VM-26. Biochemistry. 1988 Nov 29;27(24):8861–8869. doi: 10.1021/bi00424a026. [DOI] [PubMed] [Google Scholar]
- Earnshaw W. C., Halligan B., Cooke C. A., Heck M. M., Liu L. F. Topoisomerase II is a structural component of mitotic chromosome scaffolds. J Cell Biol. 1985 May;100(5):1706–1715. doi: 10.1083/jcb.100.5.1706. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Felix C. A., Hosler M. R., Winick N. J., Masterson M., Wilson A. E., Lange B. J. ALL-1 gene rearrangements in DNA topoisomerase II inhibitor-related leukemia in children. Blood. 1995 Jun 1;85(11):3250–3256. [PubMed] [Google Scholar]
- Fernandes D. J., Danks M. K., Beck W. T. Decreased nuclear matrix DNA topoisomerase II in human leukemia cells resistant to VM-26 and m-AMSA. Biochemistry. 1990 May 1;29(17):4235–4241. doi: 10.1021/bi00469a028. [DOI] [PubMed] [Google Scholar]
- Fisher D. E. Apoptosis in cancer therapy: crossing the threshold. Cell. 1994 Aug 26;78(4):539–542. doi: 10.1016/0092-8674(94)90518-5. [DOI] [PubMed] [Google Scholar]
- Gasser S. M., Laemmli U. K. Cohabitation of scaffold binding regions with upstream/enhancer elements of three developmentally regulated genes of D. melanogaster. Cell. 1986 Aug 15;46(4):521–530. doi: 10.1016/0092-8674(86)90877-9. [DOI] [PubMed] [Google Scholar]
- Hashimoto H., Chatterjee S., Berger N. A. Inhibition of etoposide (VP-16)-induced DNA recombination and mutant frequency by Bcl-2 protein overexpression. Cancer Res. 1995 Sep 15;55(18):4029–4035. [PubMed] [Google Scholar]
- Hickman J. A. Apoptosis induced by anticancer drugs. Cancer Metastasis Rev. 1992 Sep;11(2):121–139. doi: 10.1007/BF00048059. [DOI] [PubMed] [Google Scholar]
- Houge G., Robaye B., Eikhom T. S., Golstein J., Mellgren G., Gjertsen B. T., Lanotte M., Døskeland S. O. Fine mapping of 28S rRNA sites specifically cleaved in cells undergoing apoptosis. Mol Cell Biol. 1995 Apr;15(4):2051–2062. doi: 10.1128/mcb.15.4.2051. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Iarovaia O., Hancock R., Lagarkova M., Miassod R., Razin S. V. Mapping of genomic DNA loop organization in a 500-kilobase region of the Drosophila X chromosome by the topoisomerase II-mediated DNA loop excision protocol. Mol Cell Biol. 1996 Jan;16(1):302–308. doi: 10.1128/mcb.16.1.302. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jackson D. A., Dickinson P., Cook P. R. The size of chromatin loops in HeLa cells. EMBO J. 1990 Feb;9(2):567–571. doi: 10.1002/j.1460-2075.1990.tb08144.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaufmann S. H. Induction of endonucleolytic DNA cleavage in human acute myelogenous leukemia cells by etoposide, camptothecin, and other cytotoxic anticancer drugs: a cautionary note. Cancer Res. 1989 Nov 1;49(21):5870–5878. [PubMed] [Google Scholar]
- Kubota M., Hoshino Y., Doi H., Ueno H., Nishida Y., Hirota H., Akiyama Y. Myelodysplastic syndrome with t(9;11)(p22;q23) after treatment for B-cell acute lymphoblastic leukemia without epipodophyllotoxins. Acta Haematol. 1994;92(1):33–35. doi: 10.1159/000204134. [DOI] [PubMed] [Google Scholar]
- Käs E., Laemmli U. K. In vivo topoisomerase II cleavage of the Drosophila histone and satellite III repeats: DNA sequence and structural characteristics. EMBO J. 1992 Feb;11(2):705–716. doi: 10.1002/j.1460-2075.1992.tb05103.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lagarkova M. A., Iarovaia O. V., Razin S. V. Large-scale fragmentation of mammalian DNA in the course of apoptosis proceeds via excision of chromosomal DNA loops and their oligomers. J Biol Chem. 1995 Sep 1;270(35):20239–20241. doi: 10.1074/jbc.270.35.20239. [DOI] [PubMed] [Google Scholar]
- Laster S. M., Wood J. G., Gooding L. R. Tumor necrosis factor can induce both apoptic and necrotic forms of cell lysis. J Immunol. 1988 Oct 15;141(8):2629–2634. [PubMed] [Google Scholar]
- Mamuris Z., Prieur M., Dutrillaux B., Aurias A. The chemotherapeutic drug melphalan induces breakage of chromosomes regions rearranged in secondary leukemia. Cancer Genet Cytogenet. 1989 Jan;37(1):65–77. doi: 10.1016/0165-4608(89)90076-9. [DOI] [PubMed] [Google Scholar]
- Maraschin J., Dutrillaux B., Aurias A. Chromosome aberrations induced by etoposide (VP-16) are not random. Int J Cancer. 1990 Nov 15;46(5):808–812. doi: 10.1002/ijc.2910460511. [DOI] [PubMed] [Google Scholar]
- McCabe N. R., Burnett R. C., Gill H. J., Thirman M. J., Mbangkollo D., Kipiniak M., van Melle E., Ziemin-van der Poel S., Rowley J. D., Diaz M. O. Cloning of cDNAs of the MLL gene that detect DNA rearrangements and altered RNA transcripts in human leukemic cells with 11q23 translocations. Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):11794–11798. doi: 10.1073/pnas.89.24.11794. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mirkovitch J., Mirault M. E., Laemmli U. K. Organization of the higher-order chromatin loop: specific DNA attachment sites on nuclear scaffold. Cell. 1984 Nov;39(1):223–232. doi: 10.1016/0092-8674(84)90208-3. [DOI] [PubMed] [Google Scholar]
- Miyoshi H., Shimizu K., Kozu T., Maseki N., Kaneko Y., Ohki M. t(8;21) breakpoints on chromosome 21 in acute myeloid leukemia are clustered within a limited region of a single gene, AML1. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10431–10434. doi: 10.1073/pnas.88.23.10431. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morgenbesser S. D., DePinho R. A. Use of transgenic mice to study myc family gene function in normal mammalian development and in cancer. Semin Cancer Biol. 1994 Feb;5(1):21–36. [PubMed] [Google Scholar]
- Nedospasov S. A., Georgiev G. P. Non-random cleavage of SV40 DNA in the compact minichromosome and free in solution by micrococcal nuclease. Biochem Biophys Res Commun. 1980 Jan 29;92(2):532–539. doi: 10.1016/0006-291x(80)90366-6. [DOI] [PubMed] [Google Scholar]
- Oberhammer F. A., Pavelka M., Sharma S., Tiefenbacher R., Purchio A. F., Bursch W., Schulte-Hermann R. Induction of apoptosis in cultured hepatocytes and in regressing liver by transforming growth factor beta 1. Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5408–5412. doi: 10.1073/pnas.89.12.5408. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oberhammer F., Wilson J. W., Dive C., Morris I. D., Hickman J. A., Wakeling A. E., Walker P. R., Sikorska M. Apoptotic death in epithelial cells: cleavage of DNA to 300 and/or 50 kb fragments prior to or in the absence of internucleosomal fragmentation. EMBO J. 1993 Sep;12(9):3679–3684. doi: 10.1002/j.1460-2075.1993.tb06042.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pedersen-Bjergaard J., Pedersen M., Roulston D., Philip P. Different genetic pathways in leukemogenesis for patients presenting with therapy-related myelodysplasia and therapy-related acute myeloid leukemia. Blood. 1995 Nov 1;86(9):3542–3552. [PubMed] [Google Scholar]
- Pedersen-Bjergaard J., Philip P. Balanced translocations involving chromosome bands 11q23 and 21q22 are highly characteristic of myelodysplasia and leukemia following therapy with cytostatic agents targeting at DNA-topoisomerase II. Blood. 1991 Aug 15;78(4):1147–1148. [PubMed] [Google Scholar]
- Philpott N. J., Elebute M. O., Powles R., Treleaven J. G., Gore M., Dainton M. G., Min T., Swansbury G. J., Catovsky D. Platinum agents and secondary myeloid leukaemia: two cases treated only with platinum-based drugs. Br J Haematol. 1996 Jun;93(4):884–887. doi: 10.1046/j.1365-2141.1996.d01-1716.x. [DOI] [PubMed] [Google Scholar]
- Rabbitts T. H. Chromosomal translocations in human cancer. Nature. 1994 Nov 10;372(6502):143–149. doi: 10.1038/372143a0. [DOI] [PubMed] [Google Scholar]
- Ratain M. J., Kaminer L. S., Bitran J. D., Larson R. A., Le Beau M. M., Skosey C., Purl S., Hoffman P. C., Wade J., Vardiman J. W. Acute nonlymphocytic leukemia following etoposide and cisplatin combination chemotherapy for advanced non-small-cell carcinoma of the lung. Blood. 1987 Nov;70(5):1412–1417. [PubMed] [Google Scholar]
- Razin S. V., Petrov P., Hancock R. Precise localization of the alpha-globin gene cluster within one of the 20- to 300-kilobase DNA fragments released by cleavage of chicken chromosomal DNA at topoisomerase II sites in vivo: evidence that the fragments are DNA loops or domains. Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8515–8519. doi: 10.1073/pnas.88.19.8515. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rubnitz J. E., Behm F. G., Downing J. R. 11q23 rearrangements in acute leukemia. Leukemia. 1996 Jan;10(1):74–82. [PubMed] [Google Scholar]
- Schichman S. A., Caligiuri M. A., Strout M. P., Carter S. L., Gu Y., Canaani E., Bloomfield C. D., Croce C. M. ALL-1 tandem duplication in acute myeloid leukemia with a normal karyotype involves homologous recombination between Alu elements. Cancer Res. 1994 Aug 15;54(16):4277–4280. [PubMed] [Google Scholar]
- Smith M. A., McCaffrey R. P., Karp J. E. The secondary leukemias: challenges and research directions. J Natl Cancer Inst. 1996 Apr 3;88(7):407–418. doi: 10.1093/jnci/88.7.407. [DOI] [PubMed] [Google Scholar]
- Sperry A. O., Blasquez V. C., Garrard W. T. Dysfunction of chromosomal loop attachment sites: illegitimate recombination linked to matrix association regions and topoisomerase II. Proc Natl Acad Sci U S A. 1989 Jul;86(14):5497–5501. doi: 10.1073/pnas.86.14.5497. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spitzner J. R., Muller M. T. A consensus sequence for cleavage by vertebrate DNA topoisomerase II. Nucleic Acids Res. 1988 Jun 24;16(12):5533–5556. doi: 10.1093/nar/16.12.5533. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stanulla M., Wang J., Chervinsky D. S., Aplan P. D. Topoisomerase II inhibitors induce DNA double-strand breaks at a specific site within the AML1 locus. Leukemia. 1997 Apr;11(4):490–496. doi: 10.1038/sj.leu.2400632. [DOI] [PubMed] [Google Scholar]
- Super H. J., McCabe N. R., Thirman M. J., Larson R. A., Le Beau M. M., Pedersen-Bjergaard J., Philip P., Diaz M. O., Rowley J. D. Rearrangements of the MLL gene in therapy-related acute myeloid leukemia in patients previously treated with agents targeting DNA-topoisomerase II. Blood. 1993 Dec 15;82(12):3705–3711. [PubMed] [Google Scholar]
- Tepper C. G., Studzinski G. P. Resistance of mitochondrial DNA to degradation characterizes the apoptotic but not the necrotic mode of human leukemia cell death. J Cell Biochem. 1993 Jul;52(3):352–361. doi: 10.1002/jcb.240520311. [DOI] [PubMed] [Google Scholar]
- Thirman M. J., Gill H. J., Burnett R. C., Mbangkollo D., McCabe N. R., Kobayashi H., Ziemin-van der Poel S., Kaneko Y., Morgan R., Sandberg A. A. Rearrangement of the MLL gene in acute lymphoblastic and acute myeloid leukemias with 11q23 chromosomal translocations. N Engl J Med. 1993 Sep 23;329(13):909–914. doi: 10.1056/NEJM199309233291302. [DOI] [PubMed] [Google Scholar]
- Tycko B., Sklar J. Chromosomal translocations in lymphoid neoplasia: a reappraisal of the recombinase model. Cancer Cells. 1990 Jan;2(1):1–8. [PubMed] [Google Scholar]
- White E. Death-defying acts: a meeting review on apoptosis. Genes Dev. 1993 Dec;7(12A):2277–2284. doi: 10.1101/gad.7.12a.2277. [DOI] [PubMed] [Google Scholar]
- Winick N. J., McKenna R. W., Shuster J. J., Schneider N. R., Borowitz M. J., Bowman W. P., Jacaruso D., Kamen B. A., Buchanan G. R. Secondary acute myeloid leukemia in children with acute lymphoblastic leukemia treated with etoposide. J Clin Oncol. 1993 Feb;11(2):209–217. doi: 10.1200/JCO.1993.11.2.209. [DOI] [PubMed] [Google Scholar]
- Wyllie A. H., Kerr J. F., Currie A. R. Cell death: the significance of apoptosis. Int Rev Cytol. 1980;68:251–306. doi: 10.1016/s0074-7696(08)62312-8. [DOI] [PubMed] [Google Scholar]