Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1997 Jul;17(7):4191–4197. doi: 10.1128/mcb.17.7.4191

The composition of coding joints formed in V(D)J recombination is strongly affected by the nucleotide sequence of the coding ends and their relationship to the recombination signal sequences.

U R Ezekiel 1, T Sun 1, G Bozek 1, U Storb 1
PMCID: PMC232272  PMID: 9199354

Abstract

V(D)J recombination proceeds in two stages. Precise cleavage at the border of the conserved recombination signal sequences (RSSs) and the coding ends results in flush double-stranded signal ends and coding ends terminating in hairpins. In the second stage, the signal and coding ends are processed into signal and coding joints. Coding ends containing certain nucleotide homopolymers affect the efficiency of V(D)J recombination. In this study, we have tested the effect of small changes in coding-end nucleotide composition on the frequency of coding- and signal joint formation. Furthermore, we have determined the sequences of coding joints resulting from recombination of coding ends with different compositions. We found that the presence of two T nucleotides 5' of both RSSs, but not a single T, reduces the frequency of signal joint formation, i.e., interferes with the cleavage stage of V(D)J recombination. However, coding-joint processing is sensitive even to a single T. Both the sequence of the coding ends and the particular RSS (12-mer or 23-mer) with which the coding end is associated affect the final composition of the coding joints. Thus, the presence of P nucleotides, the conservation of one undeleted coding end, the formation of joints without any deletions, and the template-dependent insertion of nucleotides are strongly influenced by the coding-end nucleotide composition and/or RSS association. The implications of these results with respect to the processing of coding ends are discussed.

Full Text

The Full Text of this article is available as a PDF (198.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asarnow D. M., Cado D., Raulet D. H. Selection is not required to produce invariant T-cell receptor gamma-gene junctional sequences. Nature. 1993 Mar 11;362(6416):158–160. doi: 10.1038/362158a0. [DOI] [PubMed] [Google Scholar]
  2. Beyert N., Reichenberger S., Peters M., Hartung M., Göttlich B., Goedecke W., Vielmetter W., Pfeiffer P. Nonhomologous DNA end joining of synthetic hairpin substrates in Xenopus laevis egg extracts. Nucleic Acids Res. 1994 May 11;22(9):1643–1650. doi: 10.1093/nar/22.9.1643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bosma M. J., Carroll A. M. The SCID mouse mutant: definition, characterization, and potential uses. Annu Rev Immunol. 1991;9:323–350. doi: 10.1146/annurev.iy.09.040191.001543. [DOI] [PubMed] [Google Scholar]
  4. Boubnov N. V., Wills Z. P., Weaver D. T. Coding sequence composition flanking either signal element alters V(D)J recombination efficiency. Nucleic Acids Res. 1995 Mar 25;23(6):1060–1067. doi: 10.1093/nar/23.6.1060. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Boubnov N. V., Wills Z. P., Weaver D. T. V(D)J recombination coding junction formation without DNA homology: processing of coding termini. Mol Cell Biol. 1993 Nov;13(11):6957–6968. doi: 10.1128/mcb.13.11.6957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cuomo C. A., Mundy C. L., Oettinger M. A. DNA sequence and structure requirements for cleavage of V(D)J recombination signal sequences. Mol Cell Biol. 1996 Oct;16(10):5683–5690. doi: 10.1128/mcb.16.10.5683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Danska J. S., Holland D. P., Mariathasan S., Williams K. M., Guidos C. J. Biochemical and genetic defects in the DNA-dependent protein kinase in murine scid lymphocytes. Mol Cell Biol. 1996 Oct;16(10):5507–5517. doi: 10.1128/mcb.16.10.5507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Difilippantonio M. J., McMahan C. J., Eastman Q. M., Spanopoulou E., Schatz D. G. RAG1 mediates signal sequence recognition and recruitment of RAG2 in V(D)J recombination. Cell. 1996 Oct 18;87(2):253–262. doi: 10.1016/s0092-8674(00)81343-4. [DOI] [PubMed] [Google Scholar]
  9. Eastman Q. M., Leu T. M., Schatz D. G. Initiation of V(D)J recombination in vitro obeying the 12/23 rule. Nature. 1996 Mar 7;380(6569):85–88. doi: 10.1038/380085a0. [DOI] [PubMed] [Google Scholar]
  10. Engler P., Storb U. High-frequency deletional rearrangement of immunoglobulin kappa gene segments introduced into a pre-B-cell line. Proc Natl Acad Sci U S A. 1987 Jul;84(14):4949–4953. doi: 10.1073/pnas.84.14.4949. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ezekiel U. R., Engler P., Stern D., Storb U. Asymmetric processing of coding ends and the effect of coding end nucleotide composition on V(D)J recombination. Immunity. 1995 Apr;2(4):381–389. doi: 10.1016/1074-7613(95)90146-9. [DOI] [PubMed] [Google Scholar]
  12. Feeney A. J., Victor K. D., Vu K., Nadel B., Chukwuocha R. U. Influence of the V(D)J recombination mechanism on the formation of the primary T and B cell repertoires. Semin Immunol. 1994 Jun;6(3):155–163. doi: 10.1006/smim.1994.1021. [DOI] [PubMed] [Google Scholar]
  13. Gerstein R. M., Lieber M. R. Coding end sequence can markedly affect the initiation of V(D)J recombination. Genes Dev. 1993 Jul;7(7B):1459–1469. doi: 10.1101/gad.7.7b.1459. [DOI] [PubMed] [Google Scholar]
  14. Goldman J. P., Spencer D. M., Raulet D. H. Ordered rearrangement of variable region genes of the T cell receptor gamma locus correlates with transcription of the unrearranged genes. J Exp Med. 1993 Mar 1;177(3):729–739. doi: 10.1084/jem.177.3.729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Harrington J. J., Lieber M. R. The characterization of a mammalian DNA structure-specific endonuclease. EMBO J. 1994 Mar 1;13(5):1235–1246. doi: 10.1002/j.1460-2075.1994.tb06373.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hirt B. Selective extraction of polyoma DNA from infected mouse cell cultures. J Mol Biol. 1967 Jun 14;26(2):365–369. doi: 10.1016/0022-2836(67)90307-5. [DOI] [PubMed] [Google Scholar]
  17. Kirchgessner C. U., Patil C. K., Evans J. W., Cuomo C. A., Fried L. M., Carter T., Oettinger M. A., Brown J. M. DNA-dependent kinase (p350) as a candidate gene for the murine SCID defect. Science. 1995 Feb 24;267(5201):1178–1183. doi: 10.1126/science.7855601. [DOI] [PubMed] [Google Scholar]
  18. Lafaille J. J., DeCloux A., Bonneville M., Takagaki Y., Tonegawa S. Junctional sequences of T cell receptor gamma delta genes: implications for gamma delta T cell lineages and for a novel intermediate of V-(D)-J joining. Cell. 1989 Dec 1;59(5):859–870. doi: 10.1016/0092-8674(89)90609-0. [DOI] [PubMed] [Google Scholar]
  19. Lewis S. M. P nucleotide insertions and the resolution of hairpin DNA structures in mammalian cells. Proc Natl Acad Sci U S A. 1994 Feb 15;91(4):1332–1336. doi: 10.1073/pnas.91.4.1332. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lewis S. M. The mechanism of V(D)J joining: lessons from molecular, immunological, and comparative analyses. Adv Immunol. 1994;56:27–150. doi: 10.1016/s0065-2776(08)60450-2. [DOI] [PubMed] [Google Scholar]
  21. Lieber M. R., Hesse J. E., Mizuuchi K., Gellert M. Developmental stage specificity of the lymphoid V(D)J recombination activity. Genes Dev. 1987 Oct;1(8):751–761. doi: 10.1101/gad.1.8.751. [DOI] [PubMed] [Google Scholar]
  22. McBlane J. F., van Gent D. C., Ramsden D. A., Romeo C., Cuomo C. A., Gellert M., Oettinger M. A. Cleavage at a V(D)J recombination signal requires only RAG1 and RAG2 proteins and occurs in two steps. Cell. 1995 Nov 3;83(3):387–395. doi: 10.1016/0092-8674(95)90116-7. [DOI] [PubMed] [Google Scholar]
  23. Meier J. T., Lewis S. M. P nucleotides in V(D)J recombination: a fine-structure analysis. Mol Cell Biol. 1993 Feb;13(2):1078–1092. doi: 10.1128/mcb.13.2.1078. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Pandey V. N., Dave V. P., Patil M. S., Pradhan D. S., Amrute S. B., Modak M. J. Terminal deoxynucleotidyltransferase containing megadalton complex from young rat thymus nuclei: identification and characterization. Biochemistry. 1990 May 1;29(17):4037–4041. doi: 10.1021/bi00469a002. [DOI] [PubMed] [Google Scholar]
  25. Pfeiffer P., Vielmetter W. Joining of nonhomologous DNA double strand breaks in vitro. Nucleic Acids Res. 1988 Feb 11;16(3):907–924. doi: 10.1093/nar/16.3.907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Ramsden D. A., McBlane J. F., van Gent D. C., Gellert M. Distinct DNA sequence and structure requirements for the two steps of V(D)J recombination signal cleavage. EMBO J. 1996 Jun 17;15(12):3197–3206. [PMC free article] [PubMed] [Google Scholar]
  27. Roth D. B., Wilson J. H. Nonhomologous recombination in mammalian cells: role for short sequence homologies in the joining reaction. Mol Cell Biol. 1986 Dec;6(12):4295–4304. doi: 10.1128/mcb.6.12.4295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Spanopoulou E., Zaitseva F., Wang F. H., Santagata S., Baltimore D., Panayotou G. The homeodomain region of Rag-1 reveals the parallel mechanisms of bacterial and V(D)J recombination. Cell. 1996 Oct 18;87(2):263–276. doi: 10.1016/s0092-8674(00)81344-6. [DOI] [PubMed] [Google Scholar]
  29. Zhu C., Bogue M. A., Lim D. S., Hasty P., Roth D. B. Ku86-deficient mice exhibit severe combined immunodeficiency and defective processing of V(D)J recombination intermediates. Cell. 1996 Aug 9;86(3):379–389. doi: 10.1016/s0092-8674(00)80111-7. [DOI] [PubMed] [Google Scholar]
  30. van Gent D. C., McBlane J. F., Ramsden D. A., Sadofsky M. J., Hesse J. E., Gellert M. Initiation of V(D)J recombination in a cell-free system. Cell. 1995 Jun 16;81(6):925–934. doi: 10.1016/0092-8674(95)90012-8. [DOI] [PubMed] [Google Scholar]
  31. van Gent D. C., Ramsden D. A., Gellert M. The RAG1 and RAG2 proteins establish the 12/23 rule in V(D)J recombination. Cell. 1996 Apr 5;85(1):107–113. doi: 10.1016/s0092-8674(00)81086-7. [DOI] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES