Abstract
Major histocompatibility complex class II (MHC-II) molecules present peptide antigens to CD4-positive T cells and are of critical importance for the immune response. The MHC-II transactivator CIITA is essential for all aspects of MHC-II gene expression examined so far and thus constitutes a master regulator of MHC-II expression. In this study, we generated and analyzed mutant CIITA molecules which are able to suppress endogenous MHC-II expression in a dominant negative manner for both constitutive and inducible MHC-II expression. Dominant negative CIITA mutants were generated via specific restriction sites and by functional selection from a library of random N-terminal CIITA deletions. This functional selection strategy was very effective, leading to strong dominant negative CIITA mutants in which the N-terminal acidic and proline/serine/threonine-rich regions were completely deleted. Dominant negative activity is dependent on an intact C terminus. Efficient repression of endogenous MHC-II mRNA levels was quantified by RNase protection analysis. The quantitative effects of various dominant negative CIITA mutants on mRNA expression levels of the different MHC-II isotypes are very similar. The optimized dominant negative CIITA mutants isolated by functional selection should be useful for in vivo repression of MHC-II expression.
Full Text
The Full Text of this article is available as a PDF (538.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- André I., Gonzalez A., Wang B., Katz J., Benoist C., Mathis D. Checkpoints in the progression of autoimmune disease: lessons from diabetes models. Proc Natl Acad Sci U S A. 1996 Mar 19;93(6):2260–2263. doi: 10.1073/pnas.93.6.2260. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Attardi L. D., Von Seggern D., Tjian R. Ectopic expression of wild-type or a dominant-negative mutant of transcription factor NTF-1 disrupts normal Drosophila development. Proc Natl Acad Sci U S A. 1993 Nov 15;90(22):10563–10567. doi: 10.1073/pnas.90.22.10563. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barnstable C. J., Bodmer W. F., Brown G., Galfre G., Milstein C., Williams A. F., Ziegler A. Production of monoclonal antibodies to group A erythrocytes, HLA and other human cell surface antigens-new tools for genetic analysis. Cell. 1978 May;14(1):9–20. doi: 10.1016/0092-8674(78)90296-9. [DOI] [PubMed] [Google Scholar]
- Benoist C., Mathis D. Regulation of major histocompatibility complex class-II genes: X, Y and other letters of the alphabet. Annu Rev Immunol. 1990;8:681–715. doi: 10.1146/annurev.iy.08.040190.003341. [DOI] [PubMed] [Google Scholar]
- Bontron S., Steimle V., Ucla C., Eibl M. M., Mach B. Two novel mutations in the MHC class II transactivator CIITA in a second patient from MHC class II deficiency complementation group A. Hum Genet. 1997 Apr;99(4):541–546. doi: 10.1007/s004390050403. [DOI] [PubMed] [Google Scholar]
- Bowman T., Symonds H., Gu L., Yin C., Oren M., Van Dyke T. Tissue-specific inactivation of p53 tumor suppression in the mouse. Genes Dev. 1996 Apr 1;10(7):826–835. doi: 10.1101/gad.10.7.826. [DOI] [PubMed] [Google Scholar]
- Brent R., Ptashne M. A eukaryotic transcriptional activator bearing the DNA specificity of a prokaryotic repressor. Cell. 1985 Dec;43(3 Pt 2):729–736. doi: 10.1016/0092-8674(85)90246-6. [DOI] [PubMed] [Google Scholar]
- Brown J. A., He X. F., Westerheide S. D., Boss J. M. Characterization of the expressed CIITA allele in the class II MHC transcriptional mutant RJ2.2.5. Immunogenetics. 1996;43(1-2):88–91. doi: 10.1007/BF00186611. [DOI] [PubMed] [Google Scholar]
- Calnan B. J., Szychowski S., Chan F. K., Cado D., Winoto A. A role for the orphan steroid receptor Nur77 in apoptosis accompanying antigen-induced negative selection. Immunity. 1995 Sep;3(3):273–282. doi: 10.1016/1074-7613(95)90113-2. [DOI] [PubMed] [Google Scholar]
- Charron D. J., McDevitt H. O. Analysis of HLA-D region-associated molecules with monoclonal antibody. Proc Natl Acad Sci U S A. 1979 Dec;76(12):6567–6571. doi: 10.1073/pnas.76.12.6567. [DOI] [PMC free article] [PubMed] [Google Scholar]
- De Lerma Barbaro A., Sartoris S., Tosi G., Nicolis M., Accolla R. S. Evidence for a specific post-transcriptional mechanism controlling the expression of HLA-DQ, but not -DR and -DP, molecules. J Immunol. 1994 Nov 15;153(10):4530–4538. [PubMed] [Google Scholar]
- Diedrichs M., Schendel D. J. Differential surface expression of class II isotypes on activated CD4 and CD8 cells correlates with levels of locus-specific mRNA. J Immunol. 1989 May 1;142(9):3275–3280. [PubMed] [Google Scholar]
- Durand B., Sperisen P., Emery P., Barras E., Zufferey M., Mach B., Reith W. RFXAP, a novel subunit of the RFX DNA binding complex is mutated in MHC class II deficiency. EMBO J. 1997 Mar 3;16(5):1045–1055. doi: 10.1093/emboj/16.5.1045. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Glimcher L. H., Kara C. J. Sequences and factors: a guide to MHC class-II transcription. Annu Rev Immunol. 1992;10:13–49. doi: 10.1146/annurev.iy.10.040192.000305. [DOI] [PubMed] [Google Scholar]
- Gönczy P., Reith W., Barras E., Lisowska-Grospierre B., Griscelli C., Hadam M. R., Mach B. Inherited immunodeficiency with a defect in a major histocompatibility complex class II promoter-binding protein differs in the chromatin structure of the HLA-DRA gene. Mol Cell Biol. 1989 Jan;9(1):296–302. doi: 10.1128/mcb.9.1.296. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hachiya M., Chumakov A., Miller C. W., Akashi M., Said J., Koeffler H. P. Mutant p53 proteins behave in a dominant, negative fashion in vivo. Anticancer Res. 1994 Sep-Oct;14(5A):1853–1859. [PubMed] [Google Scholar]
- Helbig H., Kittredge K. L., Palestine A. G., Coca-Prados M., Nussenblatt R. B. Gamma-interferon induces differential expression of HLA-DR, -DP and -DQ in human ciliary epithelial cells. Graefes Arch Clin Exp Ophthalmol. 1991;229(2):191–194. doi: 10.1007/BF00170556. [DOI] [PubMed] [Google Scholar]
- Herskowitz I. Functional inactivation of genes by dominant negative mutations. Nature. 1987 Sep 17;329(6136):219–222. doi: 10.1038/329219a0. [DOI] [PubMed] [Google Scholar]
- Katz J. D., Wang B., Haskins K., Benoist C., Mathis D. Following a diabetogenic T cell from genesis through pathogenesis. Cell. 1993 Sep 24;74(6):1089–1100. doi: 10.1016/0092-8674(93)90730-e. [DOI] [PubMed] [Google Scholar]
- Kobe B., Deisenhofer J. Proteins with leucine-rich repeats. Curr Opin Struct Biol. 1995 Jun;5(3):409–416. doi: 10.1016/0959-440x(95)80105-7. [DOI] [PubMed] [Google Scholar]
- Lalle P., Moyret-Lalle C., Wang Q., Vialle J. M., Navarro C., Bressac-de Paillerets B., Magaud J. P., Ozturk M. Genomic stability and wild-type p53 function of lymphoblastoid cells with germ-line p53 mutation. Oncogene. 1995 Jun 15;10(12):2447–2454. [PubMed] [Google Scholar]
- Lloyd A., Yancheva N., Wasylyk B. Transformation suppressor activity of a Jun transcription factor lacking its activation domain. Nature. 1991 Aug 15;352(6336):635–638. doi: 10.1038/352635a0. [DOI] [PubMed] [Google Scholar]
- Mach B., Steimle V., Martinez-Soria E., Reith W. Regulation of MHC class II genes: lessons from a disease. Annu Rev Immunol. 1996;14:301–331. doi: 10.1146/annurev.immunol.14.1.301. [DOI] [PubMed] [Google Scholar]
- Maurer D. H., Hanke J. H., Mickelson E., Rich R. R., Pollack M. S. Differential presentation of HLA-DR, DQ, and DP restriction elements by interferon-gamma-treated dermal fibroblasts. J Immunol. 1987 Aug 1;139(3):715–723. [PubMed] [Google Scholar]
- O'Hare P., Williams G. Structural studies of the acidic transactivation domain of the Vmw65 protein of herpes simplex virus using 1H NMR. Biochemistry. 1992 Apr 28;31(16):4150–4156. doi: 10.1021/bi00131a035. [DOI] [PubMed] [Google Scholar]
- Perlmutter R. M., Alberola-Ila J. The use of dominant-negative mutations to elucidate signal transduction pathways in lymphocytes. Curr Opin Immunol. 1996 Apr;8(2):285–290. doi: 10.1016/s0952-7915(96)80069-0. [DOI] [PubMed] [Google Scholar]
- Platt J. L. Xenotransplantation: recent progress and current perspectives. Curr Opin Immunol. 1996 Oct;8(5):721–728. doi: 10.1016/s0952-7915(96)80091-4. [DOI] [PubMed] [Google Scholar]
- Reith W., Satola S., Sanchez C. H., Amaldi I., Lisowska-Grospierre B., Griscelli C., Hadam M. R., Mach B. Congenital immunodeficiency with a regulatory defect in MHC class II gene expression lacks a specific HLA-DR promoter binding protein, RF-X. Cell. 1988 Jun 17;53(6):897–906. doi: 10.1016/s0092-8674(88)90389-3. [DOI] [PubMed] [Google Scholar]
- Reith W., Steimle V., Mach B. Molecular defects in the bare lymphocyte syndrome and regulation of MHC class II genes. Immunol Today. 1995 Nov;16(11):539–546. doi: 10.1016/0167-5699(95)80048-4. [DOI] [PubMed] [Google Scholar]
- Riley J. L., Westerheide S. D., Price J. A., Brown J. A., Boss J. M. Activation of class II MHC genes requires both the X box region and the class II transactivator (CIITA). Immunity. 1995 May;2(5):533–543. doi: 10.1016/1074-7613(95)90033-0. [DOI] [PubMed] [Google Scholar]
- Seipel K., Georgiev O., Schaffner W. Different activation domains stimulate transcription from remote ('enhancer') and proximal ('promoter') positions. EMBO J. 1992 Dec;11(13):4961–4968. doi: 10.1002/j.1460-2075.1992.tb05603.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Silacci P., Mottet A., Steimle V., Reith W., Mach B. Developmental extinction of major histocompatibility complex class II gene expression in plasmocytes is mediated by silencing of the transactivator gene CIITA. J Exp Med. 1994 Oct 1;180(4):1329–1336. doi: 10.1084/jem.180.4.1329. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Steimle V., Durand B., Barras E., Zufferey M., Hadam M. R., Mach B., Reith W. A novel DNA-binding regulatory factor is mutated in primary MHC class II deficiency (bare lymphocyte syndrome). Genes Dev. 1995 May 1;9(9):1021–1032. doi: 10.1101/gad.9.9.1021. [DOI] [PubMed] [Google Scholar]
- Steimle V., Otten L. A., Zufferey M., Mach B. Complementation cloning of an MHC class II transactivator mutated in hereditary MHC class II deficiency (or bare lymphocyte syndrome). Cell. 1993 Oct 8;75(1):135–146. [PubMed] [Google Scholar]
- Steimle V., Siegrist C. A., Mottet A., Lisowska-Grospierre B., Mach B. Regulation of MHC class II expression by interferon-gamma mediated by the transactivator gene CIITA. Science. 1994 Jul 1;265(5168):106–109. doi: 10.1126/science.8016643. [DOI] [PubMed] [Google Scholar]
- Tabor S., Richardson C. C. A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proc Natl Acad Sci U S A. 1985 Feb;82(4):1074–1078. doi: 10.1073/pnas.82.4.1074. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takebe Y., Seiki M., Fujisawa J., Hoy P., Yokota K., Arai K., Yoshida M., Arai N. SR alpha promoter: an efficient and versatile mammalian cDNA expression system composed of the simian virus 40 early promoter and the R-U5 segment of human T-cell leukemia virus type 1 long terminal repeat. Mol Cell Biol. 1988 Jan;8(1):466–472. doi: 10.1128/mcb.8.1.466. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang P., Reed M., Wang Y., Mayr G., Stenger J. E., Anderson M. E., Schwedes J. F., Tegtmeyer P. p53 domains: structure, oligomerization, and transformation. Mol Cell Biol. 1994 Aug;14(8):5182–5191. doi: 10.1128/mcb.14.8.5182. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Watson A. J., DeMars R., Trowbridge I. S., Bach F. H. Detection of a novel human class II HLA antigen. 1983 Jul 28-Aug 3Nature. 304(5924):358–361. doi: 10.1038/304358a0. [DOI] [PubMed] [Google Scholar]
- Wilkinson M. RNA isolation: a mini-prep method. Nucleic Acids Res. 1988 Nov 25;16(22):10933–10933. doi: 10.1093/nar/16.22.10933. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yamada K., Sachs D. H., DerSimonian H. Human anti-porcine xenogeneic T cell response. Evidence for allelic specificity of mixed leukocyte reaction and for both direct and indirect pathways of recognition. J Immunol. 1995 Dec 1;155(11):5249–5256. [PubMed] [Google Scholar]
- Zhou H., Glimcher L. H. Human MHC class II gene transcription directed by the carboxyl terminus of CIITA, one of the defective genes in type II MHC combined immune deficiency. Immunity. 1995 May;2(5):545–553. doi: 10.1016/1074-7613(95)90034-9. [DOI] [PubMed] [Google Scholar]
- Ziegler A., Heinig J., Müller C., Götz H., Thinnes F. P., Uchańska-Ziegler B., Wernet P. Analysis by sequential immunoprecipitations of the specificities of the monoclonal antibodies TU22,34,35,36,37,39,43,58 and YD1/63.HLK directed against human HLA class II antigens. Immunobiology. 1986 Mar;171(1-2):77–92. doi: 10.1016/S0171-2985(86)80019-5. [DOI] [PubMed] [Google Scholar]