Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1997 Aug;17(8):4305–4311. doi: 10.1128/mcb.17.8.4305

Recruitment and phosphorylation of SH2-containing inositol phosphatase and Shc to the B-cell Fc gamma immunoreceptor tyrosine-based inhibition motif peptide motif.

S Tridandapani 1, T Kelley 1, M Pradhan 1, D Cooney 1, L B Justement 1, K M Coggeshall 1
PMCID: PMC232283  PMID: 9234687

Abstract

Recently, we and others have demonstrated that negative signaling in B cells selectively induces the tyrosine phosphorylation of a novel inositol polyphosphate phosphatase, p145SHIP. In this study, we present data indicating that p145SHIP binds directly a phosphorylated motif, immunoreceptor tyrosine-based inhibition motif (ITIM), present in the cytoplasmic domain of Fc gammaRIIB1. Using recombinant SH2 domains, we show that binding is mediated via the Src homology region 2 (SH2)-containing inositol phosphatase (SHIP) SH2 domain. SHIP also bound to a phosphopeptide derived from CD22, raising the possibility that SHIP contributes to negative signaling by this receptor as well as Fc gammaRIIB1. The association of SHIP with the ITIM phosphopeptide was activation independent, while coassociation with Shc was activation dependent. Furthermore, experiments with Fc gammaRIIB1-deficient B cells demonstrated a genetic requirement for expression of Fc gammaRIIB1 in the induction of SHIP phosphorylation and its interaction with Shc. Based on these results, we propose a model of negative signaling in which co-cross-linking of surface immunoglobulin and Fc gammaRIIB1 results in sequential tyrosine phosphorylation of the ITIM, recruitment and phosphorylation of p145SHIP, and subsequent binding of Shc.

Full Text

The Full Text of this article is available as a PDF (2.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amigorena S., Bonnerot C., Drake J. R., Choquet D., Hunziker W., Guillet J. G., Webster P., Sautes C., Mellman I., Fridman W. H. Cytoplasmic domain heterogeneity and functions of IgG Fc receptors in B lymphocytes. Science. 1992 Jun 26;256(5065):1808–1812. doi: 10.1126/science.1535455. [DOI] [PubMed] [Google Scholar]
  2. Amigorena S., Salamero J., Davoust J., Fridman W. H., Bonnerot C. Tyrosine-containing motif that transduces cell activation signals also determines internalization and antigen presentation via type III receptors for IgG. Nature. 1992 Jul 23;358(6384):337–341. doi: 10.1038/358337a0. [DOI] [PubMed] [Google Scholar]
  3. Bijsterbosch M. K., Klaus G. G. Crosslinking of surface immunoglobulin and Fc receptors on B lymphocytes inhibits stimulation of inositol phospholipid breakdown via the antigen receptors. J Exp Med. 1985 Dec 1;162(6):1825–1836. doi: 10.1084/jem.162.6.1825. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cambier J. C. Antigen and Fc receptor signaling. The awesome power of the immunoreceptor tyrosine-based activation motif (ITAM). J Immunol. 1995 Oct 1;155(7):3281–3285. [PubMed] [Google Scholar]
  5. Chacko G. W., Tridandapani S., Damen J. E., Liu L., Krystal G., Coggeshall K. M. Negative signaling in B lymphocytes induces tyrosine phosphorylation of the 145-kDa inositol polyphosphate 5-phosphatase, SHIP. J Immunol. 1996 Sep 15;157(6):2234–2238. [PubMed] [Google Scholar]
  6. Choquet D., Partiseti M., Amigorena S., Bonnerot C., Fridman W. H., Korn H. Cross-linking of IgG receptors inhibits membrane immunoglobulin-stimulated calcium influx in B lymphocytes. J Cell Biol. 1993 Apr;121(2):355–363. doi: 10.1083/jcb.121.2.355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cohen G. B., Ren R., Baltimore D. Modular binding domains in signal transduction proteins. Cell. 1995 Jan 27;80(2):237–248. doi: 10.1016/0092-8674(95)90406-9. [DOI] [PubMed] [Google Scholar]
  8. Crowley M. T., Harmer S. L., DeFranco A. L. Activation-induced association of a 145-kDa tyrosine-phosphorylated protein with Shc and Syk in B lymphocytes and macrophages. J Biol Chem. 1996 Jan 12;271(2):1145–1152. doi: 10.1074/jbc.271.2.1145. [DOI] [PubMed] [Google Scholar]
  9. D'Ambrosio D., Hippen K. L., Minskoff S. A., Mellman I., Pani G., Siminovitch K. A., Cambier J. C. Recruitment and activation of PTP1C in negative regulation of antigen receptor signaling by Fc gamma RIIB1. Science. 1995 Apr 14;268(5208):293–297. doi: 10.1126/science.7716523. [DOI] [PubMed] [Google Scholar]
  10. Damen J. E., Liu L., Cutler R. L., Krystal G. Erythropoietin stimulates the tyrosine phosphorylation of Shc and its association with Grb2 and a 145-Kd tyrosine phosphorylated protein. Blood. 1993 Oct 15;82(8):2296–2303. [PubMed] [Google Scholar]
  11. Damen J. E., Liu L., Rosten P., Humphries R. K., Jefferson A. B., Majerus P. W., Krystal G. The 145-kDa protein induced to associate with Shc by multiple cytokines is an inositol tetraphosphate and phosphatidylinositol 3,4,5-triphosphate 5-phosphatase. Proc Natl Acad Sci U S A. 1996 Feb 20;93(4):1689–1693. doi: 10.1073/pnas.93.4.1689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Daëron M., Latour S., Malbec O., Espinosa E., Pina P., Pasmans S., Fridman W. H. The same tyrosine-based inhibition motif, in the intracytoplasmic domain of Fc gamma RIIB, regulates negatively BCR-, TCR-, and FcR-dependent cell activation. Immunity. 1995 Nov;3(5):635–646. doi: 10.1016/1074-7613(95)90134-5. [DOI] [PubMed] [Google Scholar]
  13. DeFranco A. L. Structure and function of the B cell antigen receptor. Annu Rev Cell Biol. 1993;9:377–410. doi: 10.1146/annurev.cb.09.110193.002113. [DOI] [PubMed] [Google Scholar]
  14. Gold M. R., DeFranco A. L. Biochemistry of B lymphocyte activation. Adv Immunol. 1994;55:221–295. doi: 10.1016/s0065-2776(08)60511-8. [DOI] [PubMed] [Google Scholar]
  15. Kavanaugh W. M., Pot D. A., Chin S. M., Deuter-Reinhard M., Jefferson A. B., Norris F. A., Masiarz F. R., Cousens L. S., Majerus P. W., Williams L. T. Multiple forms of an inositol polyphosphate 5-phosphatase form signaling complexes with Shc and Grb2. Curr Biol. 1996 Apr 1;6(4):438–445. doi: 10.1016/s0960-9822(02)00511-0. [DOI] [PubMed] [Google Scholar]
  16. Lamkin T. D., Walk S. F., Liu L., Damen J. E., Krystal G., Ravichandran K. S. Shc interaction with Src homology 2 domain containing inositol phosphatase (SHIP) in vivo requires the Shc-phosphotyrosine binding domain and two specific phosphotyrosines on SHIP. J Biol Chem. 1997 Apr 18;272(16):10396–10401. doi: 10.1074/jbc.272.16.10396. [DOI] [PubMed] [Google Scholar]
  17. Lioubin M. N., Algate P. A., Tsai S., Carlberg K., Aebersold A., Rohrschneider L. R. p150Ship, a signal transduction molecule with inositol polyphosphate-5-phosphatase activity. Genes Dev. 1996 May 1;10(9):1084–1095. doi: 10.1101/gad.10.9.1084. [DOI] [PubMed] [Google Scholar]
  18. Liu L., Damen J. E., Cutler R. L., Krystal G. Multiple cytokines stimulate the binding of a common 145-kilodalton protein to Shc at the Grb2 recognition site of Shc. Mol Cell Biol. 1994 Oct;14(10):6926–6935. doi: 10.1128/mcb.14.10.6926. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Liu L., Damen J. E., Hughes M. R., Babic I., Jirik F. R., Krystal G. The Src homology 2 (SH2) domain of SH2-containing inositol phosphatase (SHIP) is essential for tyrosine phosphorylation of SHIP, its association with Shc, and its induction of apoptosis. J Biol Chem. 1997 Apr 4;272(14):8983–8988. doi: 10.1074/jbc.272.14.8983. [DOI] [PubMed] [Google Scholar]
  20. Muta T., Kurosaki T., Misulovin Z., Sanchez M., Nussenzweig M. C., Ravetch J. V. A 13-amino-acid motif in the cytoplasmic domain of Fc gamma RIIB modulates B-cell receptor signalling. Nature. 1994 Mar 3;368(6466):70–73. doi: 10.1038/368070a0. [DOI] [PubMed] [Google Scholar]
  21. Nagai K., Takata M., Yamamura H., Kurosaki T. Tyrosine phosphorylation of Shc is mediated through Lyn and Syk in B cell receptor signaling. J Biol Chem. 1995 Mar 24;270(12):6824–6829. doi: 10.1074/jbc.270.12.6824. [DOI] [PubMed] [Google Scholar]
  22. Ono M., Bolland S., Tempst P., Ravetch J. V. Role of the inositol phosphatase SHIP in negative regulation of the immune system by the receptor Fc(gamma)RIIB. Nature. 1996 Sep 19;383(6597):263–266. doi: 10.1038/383263a0. [DOI] [PubMed] [Google Scholar]
  23. Pani G., Kozlowski M., Cambier J. C., Mills G. B., Siminovitch K. A. Identification of the tyrosine phosphatase PTP1C as a B cell antigen receptor-associated protein involved in the regulation of B cell signaling. J Exp Med. 1995 Jun 1;181(6):2077–2084. doi: 10.1084/jem.181.6.2077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Pawson T. Protein modules and signalling networks. Nature. 1995 Feb 16;373(6515):573–580. doi: 10.1038/373573a0. [DOI] [PubMed] [Google Scholar]
  25. Pelicci G., Lanfrancone L., Grignani F., McGlade J., Cavallo F., Forni G., Nicoletti I., Grignani F., Pawson T., Pelicci P. G. A novel transforming protein (SHC) with an SH2 domain is implicated in mitogenic signal transduction. Cell. 1992 Jul 10;70(1):93–104. doi: 10.1016/0092-8674(92)90536-l. [DOI] [PubMed] [Google Scholar]
  26. Phillips N. E., Parker D. C. Cross-linking of B lymphocyte Fc gamma receptors and membrane immunoglobulin inhibits anti-immunoglobulin-induced blastogenesis. J Immunol. 1984 Feb;132(2):627–632. [PubMed] [Google Scholar]
  27. Phillips N. E., Parker D. C. Fc-dependent inhibition of mouse B cell activation by whole anti-mu antibodies. J Immunol. 1983 Feb;130(2):602–606. [PubMed] [Google Scholar]
  28. Ravetch J. V. Fc receptors: rubor redux. Cell. 1994 Aug 26;78(4):553–560. doi: 10.1016/0092-8674(94)90521-5. [DOI] [PubMed] [Google Scholar]
  29. Ravichandran K. S., Lorenz U., Shoelson S. E., Burakoff S. J. Interaction of Shc with Grb2 regulates association of Grb2 with mSOS. Mol Cell Biol. 1995 Feb;15(2):593–600. doi: 10.1128/mcb.15.2.593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Sarkar S., Schlottmann K., Cooney D., Coggeshall K. M. Negative signaling via FcgammaRIIB1 in B cells blocks phospholipase Cgamma2 tyrosine phosphorylation but not Syk or Lyn activation. J Biol Chem. 1996 Aug 16;271(33):20182–20186. doi: 10.1074/jbc.271.33.20182. [DOI] [PubMed] [Google Scholar]
  31. Sato S., Miller A. S., Inaoki M., Bock C. B., Jansen P. J., Tang M. L., Tedder T. F. CD22 is both a positive and negative regulator of B lymphocyte antigen receptor signal transduction: altered signaling in CD22-deficient mice. Immunity. 1996 Dec;5(6):551–562. doi: 10.1016/s1074-7613(00)80270-8. [DOI] [PubMed] [Google Scholar]
  32. Songyang Z., Margolis B., Chaudhuri M., Shoelson S. E., Cantley L. C. The phosphotyrosine interaction domain of SHC recognizes tyrosine-phosphorylated NPXY motif. J Biol Chem. 1995 Jun 23;270(25):14863–14866. doi: 10.1074/jbc.270.25.14863. [DOI] [PubMed] [Google Scholar]
  33. Songyang Z., Shoelson S. E., Chaudhuri M., Gish G., Pawson T., Haser W. G., King F., Roberts T., Ratnofsky S., Lechleider R. J. SH2 domains recognize specific phosphopeptide sequences. Cell. 1993 Mar 12;72(5):767–778. doi: 10.1016/0092-8674(93)90404-e. [DOI] [PubMed] [Google Scholar]
  34. Songyang Z., Shoelson S. E., McGlade J., Olivier P., Pawson T., Bustelo X. R., Barbacid M., Sabe H., Hanafusa H., Yi T. Specific motifs recognized by the SH2 domains of Csk, 3BP2, fps/fes, GRB-2, HCP, SHC, Syk, and Vav. Mol Cell Biol. 1994 Apr;14(4):2777–2785. doi: 10.1128/mcb.14.4.2777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Tridandapani S., Chacko G. W., Van Brocklyn J. R., Coggeshall K. M. Negative signaling in B cells causes reduced Ras activity by reducing Shc-Grb2 interactions. J Immunol. 1997 Feb 1;158(3):1125–1132. [PubMed] [Google Scholar]
  36. Yarden Y., Kuang W. J., Yang-Feng T., Coussens L., Munemitsu S., Dull T. J., Chen E., Schlessinger J., Francke U., Ullrich A. Human proto-oncogene c-kit: a new cell surface receptor tyrosine kinase for an unidentified ligand. EMBO J. 1987 Nov;6(11):3341–3351. doi: 10.1002/j.1460-2075.1987.tb02655.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. van der Geer P., Wiley S., Gish G. D., Lai V. K., Stephens R., White M. F., Kaplan D., Pawson T. Identification of residues that control specific binding of the Shc phosphotyrosine-binding domain to phosphotyrosine sites. Proc Natl Acad Sci U S A. 1996 Feb 6;93(3):963–968. doi: 10.1073/pnas.93.3.963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. van der Geer P., Wiley S., Gish G. D., Pawson T. The Shc adaptor protein is highly phosphorylated at conserved, twin tyrosine residues (Y239/240) that mediate protein-protein interactions. Curr Biol. 1996 Nov 1;6(11):1435–1444. doi: 10.1016/s0960-9822(96)00748-8. [DOI] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES