Skip to main content
Neurotherapeutics logoLink to Neurotherapeutics
. 2008 Apr;5(2):198–209. doi: 10.1016/j.nurt.2008.01.001

Experimental therapeutics for dystonia

H A Jinnah 1, Ellen J Hess 1,2,
PMCID: PMC2322876  NIHMSID: NIHMS45328  PMID: 18394563

Summary

Dystonia is a neurological syndrome characterized by excessive involuntary muscle contractions leading to twisting movements and unnatural postures. It has many different clinical manifestations, and many different causes. More than 3 million people worldwide suffer from dystonia, yet there are few broadly effective treatments. In the past decade, progress in research has advanced our understanding of the pathogenesis of dystonia to a point where drug discovery efforts are now feasible. Several strategies can be used to develop novel therapeutics for dystonia. Existing therapies have only modest efficacy, but may be refined and improved to increase benefits while reducing side effects. Identifying rational targets for drug intervention based on the pathogenesis of dystonia is another strategy. The surge in both basic and clinical research discoveries has provided insights at all levels, including etiological, physiological and nosological, to enable such a targeted approach. The empirical approach to drug discovery, whereby compounds are identified using a nonmechanistic strategy, is complementary to the rational approach. With the recent development of multiple animal models of dystonia, it is now possible to develop assays and perform drug screens on vast numbers of compounds. This multifaceted approach to drug discovery in dystonia will likely provide lead compounds that can then be translated for clinical use.

Key Words: Dystonia, animal models, drug discovery, pathogenesis, therapy

References

  • 1.Fahn S. The varied clinical expressions of dystonia. Neurol Clinics. 1984;2:541–554. [PubMed] [Google Scholar]
  • 2.Fahn S. Concept and classification of dystonia. Adv Neurol. 1988;50:1–8. [PubMed] [Google Scholar]
  • 3.Defazio G. Epidemiology of primary and secondary dystonia. In: Stacy MA, editor. Handbook of dystonia. New York: Informa Healthcare USA; 2007. pp. 11–20. [Google Scholar]
  • 4.Sanger TD, Delgado MR, Gaebler-Spira D, Hallett M, Mink JW, Task Force on Childhood Motor Disorders Classification and definition of disorders causing hypertonia in childhood. Pediatrics. 2003;111:e89–e97. doi: 10.1542/peds.111.1.e89. [DOI] [PubMed] [Google Scholar]
  • 5.Kyllerman M, Bager B, Bensch J, Bille B, Olow I, Voss H. Dyskinetic cerebral palsy. I. Clinical categories, associated neurological abnormalities and incidences. Acta Pediatr Scand. 1982;71:543–550. doi: 10.1111/j.1651-2227.1982.tb09472.x. [DOI] [PubMed] [Google Scholar]
  • 6.Albright AL, Barry MJ, Shafton DH, Ferson SS. Intrathecal baclofen for generalized dystonia. Dev Med Child Neurol. 2001;43:652–657. doi: 10.1017/S0012162201001190. [DOI] [PubMed] [Google Scholar]
  • 7.Tolosa E, Compta Y. Dystonia in Parkinson’s disease. J Neurol. 2006;253(Suppl 7):VII7–VII13. doi: 10.1007/s00415-006-7003-6. [DOI] [PubMed] [Google Scholar]
  • 8.Jankovic J, Tintner R. Dystonia and parkinsonism. Parkinsonism Relat Disord. 2001;8:109–121. doi: 10.1016/S1353-8020(01)00025-6. [DOI] [PubMed] [Google Scholar]
  • 9.Jankovic J. Treatment of dystonia. Lancet Neurol. 2006;5:864–872. doi: 10.1016/S1474-4422(06)70574-9. [DOI] [PubMed] [Google Scholar]
  • 10.Albanese A, Barnes MP, Bhatia KP, et al. A systematic review on the diagnosis and treatment of primary (idiopathic) dystonia and dystonia plus syndromes: report of an EFNS/MDS-ES task force. Eur J Neurol. 2006;13:433–444. doi: 10.1111/j.1468-1331.2006.01537.x. [DOI] [PubMed] [Google Scholar]
  • 11.Balash Y, Giladi N. Efficacy of pharmacological treatment of dystonia: evidence-based review including meta-analysis of the effect of botulinum toxin and other cure options. Eur J Neurol. 2006;355:818–829. doi: 10.1111/j.1468-1331.2004.00845.x. [DOI] [PubMed] [Google Scholar]
  • 12.Tarsy D, Simon DK. Dystonia. N Engl J Med. 2006;355:818–829. doi: 10.1056/NEJMra055549. [DOI] [PubMed] [Google Scholar]
  • 13.Arce CA. Selective denervation in cervical dystonia. In: Stacy MA, editor. Handbook of dystonia. New York: Informa Healthcare USA; 2007. pp. 381–392. [Google Scholar]
  • 14.Walker RH, Danisi FO, Swope DM, Goodman RR, Germano IM, Brin MF. Intrathecal baclofen for dystonia: benefits and complications during six years of experience. Mov Disord. 2000;15:1242–1247. doi: 10.1002/1531-8257(200011)15:6<1242::AID-MDS1028>3.0.CO;2-Z. [DOI] [PubMed] [Google Scholar]
  • 15.Ostrem JL, Starr PA. Treatment of dystonia with deep brain stimulation. Neurotherapeutics. 2008;5:319–329. doi: 10.1016/j.nurt.2008.01.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Pisani A, Bernardi G, Ding J, Surmeier DJ. Re-emergence of striatal cholinergic intemeurons in movement disorders. Trends Neurosci. 2007;30:545–553. doi: 10.1016/j.tins.2007.07.008. [DOI] [PubMed] [Google Scholar]
  • 17.Jinnah HA, Richter A, Mink JW, et al. Animal models for drug discovery in dystonia. Expert Opin Drug Discov. 2008;3:83–97. doi: 10.1517/17460441.3.1.83. [DOI] [PubMed] [Google Scholar]
  • 18.Moore DJ, West AB, Dawson VL, Dawson TM. Molecular pathophysiology of Parkinson’s disease. Annu Rev Neurosci. 2005;28:57–87. doi: 10.1146/annurev.neuro.28.061604.135718. [DOI] [PubMed] [Google Scholar]
  • 19.Cookson MR. The biochemistry of Parkinson’s disease. Annu Rev Biochem. 2005;74:29–52. doi: 10.1146/annurev.biochem.74.082803.133400. [DOI] [PubMed] [Google Scholar]
  • 20.Mochizuki H, Yasuda T, Mouradian MM. Advances in gene therapy for movement disorders. Neurotherapeutics. 2008;5:260–269. doi: 10.1016/j.nurt.2008.01.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.LeWitt PA, Taylor DC. Protection against Parkinson’s disease progression: clinical experience. Neurotherapeutics. 2008;5:210–225. doi: 10.1016/j.nurt.2008.01.007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Newman MB, Bakay RAE. Therapeutic potentials of human embryonic stem cells in Parkinson’s disease. Neurotherapeutics. 2008;5:237–251. doi: 10.1016/j.nurt.2008.02.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Limousin P, Martinez-Tones I. Deep brain stimulation for Parkinson’s disease. Neurotherapeutics. 2008;5:309–319. doi: 10.1016/j.nurt.2008.01.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Gross R. What happened to posteroventral pallidotomy for Parkinson’s disease and dsytonia? Neurotherapeutics. 2008;5:281–293. doi: 10.1016/j.nurt.2008.02.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Segawa M, Nomura Y, Nishiyama N. Dopa-responsive dystonia. In: Stacy MA, editor. Handbook of dystonia. New York: Informa Healthcare USA; 2007. pp. 219–244. [Google Scholar]
  • 26.Jinnah HA, Hess EJ. A new twist on the anatomy of dystonia: the basal ganglia and the cerebellum. Neurology. 2006;67:1740–1741. doi: 10.1212/01.wnl.0000246112.19504.61. [DOI] [PubMed] [Google Scholar]
  • 27.McGeer EG, McGeer PL. The dystonias. Can J Neurol Sci. 1988;15:447–483. [PubMed] [Google Scholar]
  • 28.Marks WJ. Brain surgery for dystonia. In: Stacy MA, editor. Handbook of dystonia. New York: Informa Healthcare USA; 2007. pp. 393–406. [Google Scholar]
  • 29.Ozelius LJ, Hewett JW, Page CE, et al. The early-onset torsion dystonia gene (DYT1) encodes an ATP-binding protein. Nat Genet. 1997;17:40–48. doi: 10.1038/ng0997-40. [DOI] [PubMed] [Google Scholar]
  • 30.Goodchild RE, Dauer WT. Mislocalization to the nuclear envelope: an effect of the dystonia-causing torsinA mutation. Proc Natl Acad Sci U S A. 2004;101:847–853. doi: 10.1073/pnas.0304375101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Torres GE, Sweeney AL, Beaulieu JM, Shashidharan P, Caron MG. Effect of torsinA on membrane proteins reveals a loss of function and a dominant-negative phenotype of the dystonia-associated AE-torsinA mutant. Proc Natl Acad Sci U S A. 2004;101:15650–15655. doi: 10.1073/pnas.0308088101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Misbahuddin A, Placzek MR, Taanman JW, et al. Mutant torsinA, which causes early-onset primary torsion dystonia, is redistributed to membranous structures enriched in vesicular monoamine transporter in cultured human SH-SY5Y cells. Mov Disord. 2005;20:432–440. doi: 10.1002/mds.20351. [DOI] [PubMed] [Google Scholar]
  • 33.Balcioglu A, Kim MO, Sharma N, Cha JH, Breakefield XO, Standaert DG. Dopamine release is impaired in a mouse model of DYT1 dystonia. J Neurochem. 2007;102:783–788. doi: 10.1111/j.1471-4159.2007.04590.x. [DOI] [PubMed] [Google Scholar]
  • 34.Hewett JW, Tannous B, Niland BP, et al. Mutant torsinA interferes with protein processing through the secretory pathway in DYT1 dystonia cells. Proc Natl Acad Sci U S A. 2007;104:7271–7276. doi: 10.1073/pnas.0701185104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Hewett JW, Zeng J, Niland BP, Bragg DC, Breakefield XO. Dystonia-causing mutant torsinA inhibits cell adhesion and neurite extension through interference with cytoskeletal dynamics. Neurobiol Dis. 2006;22:98–111. doi: 10.1016/j.nbd.2005.10.012. [DOI] [PubMed] [Google Scholar]
  • 36.Pisani A, Martella G, Tscherter A, et al. Altered responses to dopaminergic D2 receptor activation and N-type calcium cunents in striatal cholinergic intemeurons in a mouse model of DYT1 dystonia. Neurobiol Dis. 2006;24:318–325. doi: 10.1016/j.nbd.2006.07.006. [DOI] [PubMed] [Google Scholar]
  • 37.Hewett J, Gonzalez-Agosti C, Slater D, et al. Mutant torsinA, responsible for early-onset torsion dystonia, forms membrane inclusions in cultured neural cells. Hum Mol Genet. 2000;9:1403–1413. doi: 10.1093/hmg/9.9.1403. [DOI] [PubMed] [Google Scholar]
  • 38.McNaught KS, Kapustin A, Jackson T, et al. Brainstem pathology in DYT1 primary torsion dystonia. Ann Neurol. 2004;56:541–547. doi: 10.1002/ana.20225. [DOI] [PubMed] [Google Scholar]
  • 39.Goodchild RE, Kim CE, Dauer WT. Loss of the dystonia-associated protein torsinA selectively disrupts the neuronal nuclear envelope. Neuron. 2005;48:923–932. doi: 10.1016/j.neuron.2005.11.010. [DOI] [PubMed] [Google Scholar]
  • 40.Gonzalez-Alegre P, Paulson HL. Aberrant cellular behavior of mutant torsinA implicates nuclear envelope dysfunction in DYT1 dystonia. J Neurosci. 2004;17:2593–2601. doi: 10.1523/JNEUROSCI.4461-03.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Eidelberg D, Moeller JR, Antonini A, et al. Functional brain networks in DYT1 dystonia. Ann Neurol. 1998;44:303–312. doi: 10.1002/ana.410440304. [DOI] [PubMed] [Google Scholar]
  • 42.Gonzalez-Alegre P, Bode N, Davidson BL, Paulson HL. Silencing primary dystonia: lentiviral-mediated RNA interference therapy for DYT1 dystonia. J Neurosci. 2005;25:10502–10509. doi: 10.1523/JNEUROSCI.3016-05.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Caldwell GA, Cao S, Sexton EG, Gelwix CC, Bevel JP, Caldwell KA. Suppression of polyglutamine-induced protein aggregation in Caenorhabditis elegans by torsin proteins. Hum Mol Genet. 2003;12:307–319. doi: 10.1093/hmg/ddg027. [DOI] [PubMed] [Google Scholar]
  • 44.Cao S, Gelwix CC, Caldwell KA, Caldwell GA. Torsin-mediated protection from cellular stress in the dopaminergic neurons of Caenorhabditis elegans. J Neurosci. 2005;25:3801–3812. doi: 10.1523/JNEUROSCI.5157-04.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.McLean PJ, Kawamata H, Shariff S, et al. TorsinA and heat shock proteins act as molecular chaperones: suppression of alpha-synuclein aggregation. J Neurochem. 2002;83:846–854. doi: 10.1046/j.1471-4159.2002.01190.x. [DOI] [PubMed] [Google Scholar]
  • 46.Clarimon J, Asgeirsson H, Singleton A, et al. Torsin A haplotype predisposes to idiopathic dystonia. Ann Neurol. 2005;57:765–767. doi: 10.1002/ana.20485. [DOI] [PubMed] [Google Scholar]
  • 47.Kamm C, Asmus F, Mueller J, et al. Strong genetic evidence for association of TO1IA/TOR1B with idiopathic dystonia. Neurology. 2006;67:1857–1859. doi: 10.1212/01.wnl.0000244423.63406.17. [DOI] [PubMed] [Google Scholar]
  • 48.Sibbing D, Asmus F, König IR, et al. Candidate gene studies in focal dystonia. Neurology. 2003;61:1010–1097. doi: 10.1212/01.wnl.0000090560.20641.ab. [DOI] [PubMed] [Google Scholar]
  • 49.Hague S, Klaffke S, Clarimon J, et al. Lack of association with torsinA haplotype in German patients with sporadic dystonia. Neurology. 2006;66:951–952. doi: 10.1212/01.wnl.0000203344.43342.18. [DOI] [PubMed] [Google Scholar]
  • 50.Clarimon J, Brancati F, Peckham E, et al. Assessing the role of DRD5 and DYT1 in two different case-control series with primary blepharospasm. Mov Disord. 2006;22:162–166. doi: 10.1002/mds.21182. [DOI] [PubMed] [Google Scholar]
  • 51.Perlmutter JS, Mink JW. Dysfunction of dopaminergic pathways in dystonia. Adv Neurol. 2004;94:163–170. [PubMed] [Google Scholar]
  • 52.Jinnah HA, Visser JE, Harris JC, Lesch-Nyhan Disease International Study Group et al. Delineation of the motor disorder of Lesch-Nyhan disease. Brain. 2006;129:1201–1217. doi: 10.1093/brain/awl056. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53.Visser JE, Bär PR, Jinnah HA. Lesch—Nyhan syndrome and the basal ganglia. Brain Res Brain Res Rev. 2000;32:449–475. doi: 10.1016/S0165-0173(99)00094-6. [DOI] [PubMed] [Google Scholar]
  • 54.Boyce S, Clarke CE, Luquin R, et al. Induction of chorea and dystonia in Parkinsonian primates. Mov Disord. 1990;5:3–7. doi: 10.1002/mds.870050103. [DOI] [PubMed] [Google Scholar]
  • 55.Perlmutter JS, Tempel LW, Black KJ, et al. MPTP induces dystonia and parkinsonism: clues to the pathophysiology of dystonia. Neurology. 1997;49:1432–1438. doi: 10.1212/wnl.49.5.1432. [DOI] [PubMed] [Google Scholar]
  • 56.Troiano AR, Stoessl AJ. Neuroimaging in dystonia. In: Stacy MA, editor. Handbook of dystonia. New York: Informa Healthcare USA; 2007. pp. 93–106. [Google Scholar]
  • 57.Augood SJ, Hollingsworth Z, Albers DS, et al. Dopamine transmission in DYT1 dystonia. Adv Neurol. 2004;94:53–60. [PubMed] [Google Scholar]
  • 58.Cardoso F. Drug-induced dystonia. In: Stacy MA, editor. Handbook of dystonia. New York: Informa Healthcare USA; 2007. pp. 267–276. [Google Scholar]
  • 59.Nemeth AH. The genetics of primary dystonias and related disorders. Brain. 2002;125:695–721. doi: 10.1093/brain/awf090. [DOI] [PubMed] [Google Scholar]
  • 60.Sudarsky L, Plotkin GM, Logigian EL, Johns DR. Dystonia as a presenting feature of the 3243 mitochondrial DNA mutation. Mov Disord. 1999;14:488–491. doi: 10.1002/1531-8257(199905)14:3<488::AID-MDS1017>3.0.CO;2-4. [DOI] [PubMed] [Google Scholar]
  • 61.Head RA, de Goede CG, Newton RW, et al. Pyruvate dehydrogenase deficiency presenting as dystonia in childhood. Dev Med Child Neurol. 2004;46:710–712. doi: 10.1111/j.1469-8749.2004.tb00986.x. [DOI] [PubMed] [Google Scholar]
  • 62.McFarland R, Chinnery PF, Blakely EL, et al. Homoplasmy, heteroplasmy, and mitochondrial dystonia. Neurology. 2007;69:911–916. doi: 10.1212/01.wnl.0000267843.10977.4a. [DOI] [PubMed] [Google Scholar]
  • 63.Simon DK, Friedman J, Breakefield XO, et al. A heteroplasmic mitochondrial complex I gene mutation in adult-onset dystonia. Neurogenetics. 2003;4:199–205. doi: 10.1007/s10048-003-0150-3. [DOI] [PubMed] [Google Scholar]
  • 64.Swerdlow RH, Wooten GF. A novel deafness/dystonia peptide gene mutation that causes dystonia in female carriers of Mohr-Tranebjaerg syndrome. Ann Neurol. 2001;50:537–540. doi: 10.1002/ana.1160. [DOI] [PubMed] [Google Scholar]
  • 65.Kim HT, Edwards MJ, Tyson J, Quinn NP, Bitner-Glindzicz M, Bhatia KP. Blepharospasm and limb dystonia caused by Mohr-Tranebjaerg syndrome with a novel splice site mutation in the deafness/dystonia peptide gene. Mov Disord. 2007;22:1328–1331. doi: 10.1002/mds.21351. [DOI] [PubMed] [Google Scholar]
  • 66.Müller-Vahl KR, Kolbe H, Egensperger R, Dengler R. Mitochondriopathy, blepharospasm, and treatment with botulinum toxin. Muscle Nerve. 2000;23:647–648. doi: 10.1002/(SICI)1097-4598(200004)23:4<647::AID-MUS27>3.0.CO;2-A. [DOI] [PubMed] [Google Scholar]
  • 67.He F, Zhang S, Qian F, Zhang C. Delayed dystonia with striatal CT lucencies induced by a mycotoxin (3-nitropropionic acid) Neurology. 1995;45:2178–2183. doi: 10.1212/wnl.45.12.2178. [DOI] [PubMed] [Google Scholar]
  • 68.Palfi S, Leventhal L, Goetz CG, et al. Delayed onset of progressive dystonia following subacute 3-nitropropionic acid treatment in Cebus apella monkeys. Mov Disord. 2000;15:524–530. doi: 10.1002/1531-8257(200005)15:3<524::AID-MDS1016>3.0.CO;2-F. [DOI] [PubMed] [Google Scholar]
  • 69.Schapira AH, Warner T, Gash MT, Cleeter MW, Marinho CF, Cooper JM. Complex I function in familial and sporadic dystonia. Ann Neurol. 1997;41:556–559. doi: 10.1002/ana.410410421. [DOI] [PubMed] [Google Scholar]
  • 70.Benecke R, Strumper P, Weiss H. Electron transfer complex I defect in idiopathic dystonia. Ann Neurol. 1992;32:683–686. doi: 10.1002/ana.410320512. [DOI] [PubMed] [Google Scholar]
  • 71.Quartarone A, Siebner HR, Rothwell JC. Task-specific hand dystonia: can too much plasticity be bad for you? Trends Neurosci. 2006;29:192–199. doi: 10.1016/j.tins.2006.02.007. [DOI] [PubMed] [Google Scholar]
  • 72.Rothwell JC, Huang YZ. Systems-level studies of movement disorders in dystonia and Parkinson’s disease. Curr Opin Neurobiol. 2003;13:691–695. doi: 10.1016/j.conb.2003.10.006. [DOI] [PubMed] [Google Scholar]
  • 73.Carbon M, Ghilardi MF, Argyelan M, Dhawan V, Bressman SB, Eidelberg D. Increased cerebellar activation during sequence learning in DYT1 carriers: an equiperformance study. Brain. 2008;131:146–154. doi: 10.1093/brain/awm243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 74.Hallett M. Pathophysiology of dystonia. J Neural Transm Suppl. 2006;70:485–488. doi: 10.1007/978-3-211-45295-0_72. [DOI] [PubMed] [Google Scholar]
  • 75.Shashidharan P, Sandu D, Potla U, et al. Transgenic mouse model of early-onset DYT1 dystonia. Hum Mol Genet. 2005;14:125–133. doi: 10.1093/hmg/ddi012. [DOI] [PubMed] [Google Scholar]
  • 76.Grundmann K, Reischmann B, Vanhoutte G, et al. Overexpression of human wildtype torsinA and human AGAG torsinA in a transgenic mouse model causes phenotypic abnormalities. Neurobiol Dis. 2007;27:190–206. doi: 10.1016/j.nbd.2007.04.015. [DOI] [PubMed] [Google Scholar]
  • 77.Sharma N, Baxter MG, Petravicz J, et al. Impaired motor learning in mice expressing torsinA with the DYT1 dystonia mutation. J Neurosci. 2005;25:5351–5355. doi: 10.1523/JNEUROSCI.0855-05.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 78.Jinnah HA, Hess EJ, LeDoux MS, et al. Rodent models for dystonia research: characteristics, evaluation, and utility. Mov Disord. 2005;20:283–292. doi: 10.1002/mds.20364. [DOI] [PubMed] [Google Scholar]
  • 79.Duchen LW. Dystonia musculorum: an inherited disease of the nervous system in the mouse. Adv Neurol. 1976;14:353–365. [PubMed] [Google Scholar]
  • 80.Lorden JF, McKeon TW, Baker HJ, et al. Characterization of the rat mutant dystonic (dt): a new animal model of dystonia musculorum deformans. J Neurosci. 1984;4:1925–1932. doi: 10.1523/JNEUROSCI.04-08-01925.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 81.Fletcher CF, Lutz CM, O’Sullivan TN, et al. Absence epilepsy in tottering mutant mice is associated with calcium channel defects. Cell. 1996;87:607–617. doi: 10.1016/S0092-8674(00)81381-1. [DOI] [PubMed] [Google Scholar]
  • 82.Doyle J, Ren X, Lennon G, Stubbs L. Mutations in the Cacnlla4 calcium channel gene are associated with seizures, cerebellar degeneration, and ataxia in tottering and leaner mutant mice. Mamm Genome. 1997;8:113–120. doi: 10.1007/s003359900369. [DOI] [PubMed] [Google Scholar]
  • 83.Giffin NJ, Benton S, Goadsby PJ. Benign paroxysmal torticollis of infancy: four new cases and linkage to CACNA1A mutation. Dev Med Child Neurol. 2002;44:490–493. doi: 10.1111/j.1469-8749.2002.tb00311.x. [DOI] [PubMed] [Google Scholar]
  • 84.Spacey SD, Materek LA, Szczygielski BI, et al. Two novel CACNA1A gene mutations associated with episodic ataxia type 2 and interictal dystonia. Arch Neurol. 2005;62:314–316. doi: 10.1001/archneur.62.2.314. [DOI] [PubMed] [Google Scholar]
  • 85.Fureman BE, Jinnah HA, Hess EJ. Triggers of paroxysmal dyskinesias in the calcium channel mouse mutant tottering. Pharmacol Biochem Behav. 2002;73:631–637. doi: 10.1016/S0091-3057(02)00854-7. [DOI] [PubMed] [Google Scholar]
  • 86.Shirley TL, Rao LM, Hess EJ, Jinnah HA. Paroxysmal dyskinesias in mice. Mov Disord. 2007;23:259–264. doi: 10.1002/mds.21829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 87.Löscher W, Fisher JE, Schmidt D, Fredow G, Hönack D, Iturrian WB. The sz mutant hamster: a genetic model of epilepsy or of paroxysmal dystonia? Mov Disord. 1989;4:219–232. doi: 10.1002/mds.870040304. [DOI] [PubMed] [Google Scholar]
  • 88.Richter A, Löscher W. Pathology of idiopathic dystonia: findings from genetic animal models. Prog Neurobiol. 1998;54:633–677. doi: 10.1016/S0301-0082(97)00089-0. [DOI] [PubMed] [Google Scholar]
  • 89.Pizoli CE, Jinnah HA, Billingsley ML, Hess EJ. Abnormal cerebellar signaling induces dystonia in mice. J Neurosci. 2002;22:7825–7833. doi: 10.1523/JNEUROSCI.22-17-07825.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 90.Alvarez-Fischer D, Grundmann M, Lu L, Moller C, Oertel WH, Bandmann O. Gene expression studies in a novel rat dystonia model. Mov Disord. 2004;19:S98–S98. [Google Scholar]
  • 91.Fernagut PO, Diguet E, Stefanova N, et al. Subacute systemic 3-nitropropionic acid intoxication induces a distinct motor disorder in adult C57B1/6 mice: behavioural and histopathological characterisation. Neuroscience. 2002;114:1005–1017. doi: 10.1016/s0306-4522(02)00205-1. [DOI] [PubMed] [Google Scholar]
  • 92.Ouary S, Bizat N, Altairac S, et al. Major strain differences in response to chronic systemic administration of the mitochondrial toxin 3-nitropropionic acid in rats: implications for neuroprotection studies. Neuroscience. 2000;97:521–530. doi: 10.1016/S0306-4522(00)00020-8. [DOI] [PubMed] [Google Scholar]
  • 93.Jinnah HA, Sepkuty JP, Ho T, et al. Calcium channel agonists and dystonia in the mouse. Mov Disord. 2000;15:542–551. doi: 10.1002/1531-8257(200005)15:3<542::AID-MDS1019>3.0.CO;2-2. [DOI] [PubMed] [Google Scholar]
  • 94.Blake BL, Muehlmann AM, Egami K, Breese GR, Devine DP, Jinnah HA. Nifedipine suppresses self-injurious behavior in animals. Dev Neurosci. 2007;29:241–250. doi: 10.1159/000096414. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 95.Cenci MA, Lundblad M. Utility of 6-hydroxydopamine lesioned rats in preclinical screening of novel treatments for Parkinson disease. In: LeDoux M, editor. Animal models of movement disorders. Amsterdam: Elsevier; 2005. pp. 193–208. [Google Scholar]
  • 96.Jinnah HA, Hess EJ. The assessment of movement disorders in rodents. In: LeDoux M, editor. Animal models of movement disorders. San Diego: Elsevier Academic Press; 2005. pp. 55–71. [Google Scholar]
  • 97.Comella CL, Leurgans S, Wuu J, Stebbins GT, Chmura T, Dystonia Study Group Rating scales for dystonia: a multicenter trial. Mov Disord. 2003;18:303–312. doi: 10.1002/mds.10377. [DOI] [PubMed] [Google Scholar]
  • 98.Kupferberg HJ. Antiepileptic drug development program: a cooperative effort of government and industry. Epilepsia. 1989;30(Suppl 1):S51–S56. doi: 10.1111/j.1528-1157.1989.tb05815.x. [DOI] [PubMed] [Google Scholar]

Articles from Neurotherapeutics are provided here courtesy of Elsevier

RESOURCES