Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1997 Aug;17(8):4434–4441. doi: 10.1128/mcb.17.8.4434

Regulation of T-cell antigen receptor signalling by Syk tyrosine protein kinase.

S Latour 1, M Fournel 1, A Veillette 1
PMCID: PMC232297  PMID: 9234701

Abstract

T-cell antigen receptor (TCR) signalling has been shown to involve two classes of tyrosine protein kinases: the Src-related kinases p56(lck) and p59(fyr), and the Zap-70/Syk family kinases. Lck and FynT are postulated to initiate TCR-triggered signal transduction by phosphorylating the CD3 and zeta subunits of the TCR complex. This modification permits the recruitment of Zap-70 and Syk, which are presumed to amplify the TCR-triggered signal, by phosphorylating additional intracellular proteins. While Zap-70 is expressed in all T cells, Syk is present in thymocytes and mature T-cell populations such as intraepithelial gammadelta T cells and naive alphabeta T cells. To better understand the role of Syk in these cells, its impact on the physiology of an antigen-specific T-cell line was tested. Our results showed that compared to Zap-70 alone, Syk was a strong positive regulator of antigen receptor-induced signals in BI-141 cells. Surprisingly, they indicated that, like Src family kinases, Syk augmented TCR-triggered tyrosine phosphorylation of CD3/zeta. Syk, but not Zap-70 alone, could also stimulate tyrosine phosphorylation of a zeta-bearing chimera in transiently transfected Cos-1 cells. Finally, evidence was provided that Syk has the capacity to directly phosphorylate a zeta-derived peptide in vitro. These findings suggested that Syk may have a unique role in T cells, as a consequence of its ability to efficiently phosphorylate multiple components of the TCR signalling cascade. Furthermore, they raised the possibility that Syk can regulate the initiation of TCR signalling, by promoting phosphorylation of the immunoreceptor tyrosine-based activation motifs of the TCR complex.

Full Text

The Full Text of this article is available as a PDF (690.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abraham N., Miceli M. C., Parnes J. R., Veillette A. Enhancement of T-cell responsiveness by the lymphocyte-specific tyrosine protein kinase p56lck. Nature. 1991 Mar 7;350(6313):62–66. doi: 10.1038/350062a0. [DOI] [PubMed] [Google Scholar]
  2. Arpaia E., Shahar M., Dadi H., Cohen A., Roifman C. M. Defective T cell receptor signaling and CD8+ thymic selection in humans lacking zap-70 kinase. Cell. 1994 Mar 11;76(5):947–958. doi: 10.1016/0092-8674(94)90368-9. [DOI] [PubMed] [Google Scholar]
  3. Bu J. Y., Shaw A. S., Chan A. C. Analysis of the interaction of ZAP-70 and syk protein-tyrosine kinases with the T-cell antigen receptor by plasmon resonance. Proc Natl Acad Sci U S A. 1995 May 23;92(11):5106–5110. doi: 10.1073/pnas.92.11.5106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chan A. C., Iwashima M., Turck C. W., Weiss A. ZAP-70: a 70 kd protein-tyrosine kinase that associates with the TCR zeta chain. Cell. 1992 Nov 13;71(4):649–662. doi: 10.1016/0092-8674(92)90598-7. [DOI] [PubMed] [Google Scholar]
  5. Chan A. C., Kadlecek T. A., Elder M. E., Filipovich A. H., Kuo W. L., Iwashima M., Parslow T. G., Weiss A. ZAP-70 deficiency in an autosomal recessive form of severe combined immunodeficiency. Science. 1994 Jun 10;264(5165):1599–1601. doi: 10.1126/science.8202713. [DOI] [PubMed] [Google Scholar]
  6. Chan A. C., van Oers N. S., Tran A., Turka L., Law C. L., Ryan J. C., Clark E. A., Weiss A. Differential expression of ZAP-70 and Syk protein tyrosine kinases, and the role of this family of protein tyrosine kinases in TCR signaling. J Immunol. 1994 May 15;152(10):4758–4766. [PubMed] [Google Scholar]
  7. Chu D. H., Spits H., Peyron J. F., Rowley R. B., Bolen J. B., Weiss A. The Syk protein tyrosine kinase can function independently of CD45 or Lck in T cell antigen receptor signaling. EMBO J. 1996 Nov 15;15(22):6251–6261. [PMC free article] [PubMed] [Google Scholar]
  8. Couture C., Baier G., Oetken C., Williams S., Telford D., Marie-Cardine A., Baier-Bitterlich G., Fischer S., Burn P., Altman A. Activation of p56lck by p72syk through physical association and N-terminal tyrosine phosphorylation. Mol Cell Biol. 1994 Aug;14(8):5249–5258. doi: 10.1128/mcb.14.8.5249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Couture C., Deckert M., Williams S., Russo F. O., Altman A., Mustelin T. Identification of the site in the Syk protein tyrosine kinase that binds the SH2 domain of Lck. J Biol Chem. 1996 Sep 27;271(39):24294–24299. doi: 10.1074/jbc.271.39.24294. [DOI] [PubMed] [Google Scholar]
  10. Davidson D., Chow L. M., Fournel M., Veillette A. Differential regulation of T cell antigen responsiveness by isoforms of the src-related tyrosine protein kinase p59fyn. J Exp Med. 1992 Jun 1;175(6):1483–1492. doi: 10.1084/jem.175.6.1483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Elder M. E., Lin D., Clever J., Chan A. C., Hope T. J., Weiss A., Parslow T. G. Human severe combined immunodeficiency due to a defect in ZAP-70, a T cell tyrosine kinase. Science. 1994 Jun 10;264(5165):1596–1599. doi: 10.1126/science.8202712. [DOI] [PubMed] [Google Scholar]
  12. Evan G. I., Lewis G. K., Ramsay G., Bishop J. M. Isolation of monoclonal antibodies specific for human c-myc proto-oncogene product. Mol Cell Biol. 1985 Dec;5(12):3610–3616. doi: 10.1128/mcb.5.12.3610. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gauen L. K., Zhu Y., Letourneur F., Hu Q., Bolen J. B., Matis L. A., Klausner R. D., Shaw A. S. Interactions of p59fyn and ZAP-70 with T-cell receptor activation motifs: defining the nature of a signalling motif. Mol Cell Biol. 1994 Jun;14(6):3729–3741. doi: 10.1128/mcb.14.6.3729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Iwashima M., Irving B. A., van Oers N. S., Chan A. C., Weiss A. Sequential interactions of the TCR with two distinct cytoplasmic tyrosine kinases. Science. 1994 Feb 25;263(5150):1136–1139. doi: 10.1126/science.7509083. [DOI] [PubMed] [Google Scholar]
  15. Kolanus W., Romeo C., Seed B. T cell activation by clustered tyrosine kinases. Cell. 1993 Jul 16;74(1):171–183. doi: 10.1016/0092-8674(93)90304-9. [DOI] [PubMed] [Google Scholar]
  16. Kong G. H., Bu J. Y., Kurosaki T., Shaw A. S., Chan A. C. Reconstitution of Syk function by the ZAP-70 protein tyrosine kinase. Immunity. 1995 May;2(5):485–492. doi: 10.1016/1074-7613(95)90029-2. [DOI] [PubMed] [Google Scholar]
  17. Latour S., Chow L. M., Veillette A. Differential intrinsic enzymatic activity of Syk and Zap-70 protein-tyrosine kinases. J Biol Chem. 1996 Sep 13;271(37):22782–22790. doi: 10.1074/jbc.271.37.22782. [DOI] [PubMed] [Google Scholar]
  18. Latour S., Fridman W. H., Daëron M. Identification, molecular cloning, biologic properties, and tissue distribution of a novel isoform of murine low-affinity IgG receptor homologous to human Fc gamma RIIB1. J Immunol. 1996 Jul 1;157(1):189–197. [PubMed] [Google Scholar]
  19. Law C. L., Chandran K. A., Sidorenko S. P., Clark E. A. Phospholipase C-gamma1 interacts with conserved phosphotyrosyl residues in the linker region of Syk and is a substrate for Syk. Mol Cell Biol. 1996 Apr;16(4):1305–1315. doi: 10.1128/mcb.16.4.1305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Letourneur F., Klausner R. D. T-cell and basophil activation through the cytoplasmic tail of T-cell-receptor zeta family proteins. Proc Natl Acad Sci U S A. 1991 Oct 15;88(20):8905–8909. doi: 10.1073/pnas.88.20.8905. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Mallick-Wood C. A., Pao W., Cheng A. M., Lewis J. M., Kulkarni S., Bolen J. B., Rowley B., Tigelaar R. E., Pawson T., Hayday A. C. Disruption of epithelial gamma delta T cell repertoires by mutation of the Syk tyrosine kinase. Proc Natl Acad Sci U S A. 1996 Sep 3;93(18):9704–9709. doi: 10.1073/pnas.93.18.9704. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Miceli M. C., von Hoegen P., Parnes J. R. Adhesion versus coreceptor function of CD4 and CD8: role of the cytoplasmic tail in coreceptor activity. Proc Natl Acad Sci U S A. 1991 Apr 1;88(7):2623–2627. doi: 10.1073/pnas.88.7.2623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Negishi I., Motoyama N., Nakayama K., Nakayama K., Senju S., Hatakeyama S., Zhang Q., Chan A. C., Loh D. Y. Essential role for ZAP-70 in both positive and negative selection of thymocytes. Nature. 1995 Aug 3;376(6539):435–438. doi: 10.1038/376435a0. [DOI] [PubMed] [Google Scholar]
  24. Orchansky P. L., Matsuuchi L., Ericsson P. O., Teh H. S. Differential regulation of p72syk expression in naive and proliferating CD4-CD8+ T cells. Mol Immunol. 1996 Jul;33(10):835–846. doi: 10.1016/0161-5890(96)84609-8. [DOI] [PubMed] [Google Scholar]
  25. Peri K. G., Veillette A. Tyrosine protein kinases in T lymphocytes. Chem Immunol. 1994;59:19–39. [PubMed] [Google Scholar]
  26. Perlmutter R. M., Levin S. D., Appleby M. W., Anderson S. J., Alberola-Ila J. Regulation of lymphocyte function by protein phosphorylation. Annu Rev Immunol. 1993;11:451–499. doi: 10.1146/annurev.iy.11.040193.002315. [DOI] [PubMed] [Google Scholar]
  27. Qian D., Mollenauer M. N., Weiss A. Dominant-negative zeta-associated protein 70 inhibits T cell antigen receptor signaling. J Exp Med. 1996 Feb 1;183(2):611–620. doi: 10.1084/jem.183.2.611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Reske-Kunz A. B., Rüde E. Insulin-specific T cell hybridomas derived from (H-2b x H-2k)F1 mice preferably employ F1-unique restriction elements for antigen recognition. Eur J Immunol. 1985 Oct;15(10):1048–1054. doi: 10.1002/eji.1830151017. [DOI] [PubMed] [Google Scholar]
  29. Richards J. D., Gold M. R., Hourihane S. L., DeFranco A. L., Matsuuchi L. Reconstitution of B cell antigen receptor-induced signaling events in a nonlymphoid cell line by expressing the Syk protein-tyrosine kinase. J Biol Chem. 1996 Mar 15;271(11):6458–6466. doi: 10.1074/jbc.271.11.6458. [DOI] [PubMed] [Google Scholar]
  30. Rowley R. B., Burkhardt A. L., Chao H. G., Matsueda G. R., Bolen J. B. Syk protein-tyrosine kinase is regulated by tyrosine-phosphorylated Ig alpha/Ig beta immunoreceptor tyrosine activation motif binding and autophosphorylation. J Biol Chem. 1995 May 12;270(19):11590–11594. doi: 10.1074/jbc.270.19.11590. [DOI] [PubMed] [Google Scholar]
  31. Staerz U. D., Rammensee H. G., Benedetto J. D., Bevan M. J. Characterization of a murine monoclonal antibody specific for an allotypic determinant on T cell antigen receptor. J Immunol. 1985 Jun;134(6):3994–4000. [PubMed] [Google Scholar]
  32. Takata M., Sabe H., Hata A., Inazu T., Homma Y., Nukada T., Yamamura H., Kurosaki T. Tyrosine kinases Lyn and Syk regulate B cell receptor-coupled Ca2+ mobilization through distinct pathways. EMBO J. 1994 Mar 15;13(6):1341–1349. doi: 10.1002/j.1460-2075.1994.tb06387.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Thome M., Duplay P., Guttinger M., Acuto O. Syk and ZAP-70 mediate recruitment of p56lck/CD4 to the activated T cell receptor/CD3/zeta complex. J Exp Med. 1995 Jun 1;181(6):1997–2006. doi: 10.1084/jem.181.6.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Turner M., Mee P. J., Costello P. S., Williams O., Price A. A., Duddy L. P., Furlong M. T., Geahlen R. L., Tybulewicz V. L. Perinatal lethality and blocked B-cell development in mice lacking the tyrosine kinase Syk. Nature. 1995 Nov 16;378(6554):298–302. doi: 10.1038/378298a0. [DOI] [PubMed] [Google Scholar]
  35. Veillette A., Bookman M. A., Horak E. M., Bolen J. B. The CD4 and CD8 T cell surface antigens are associated with the internal membrane tyrosine-protein kinase p56lck. Cell. 1988 Oct 21;55(2):301–308. doi: 10.1016/0092-8674(88)90053-0. [DOI] [PubMed] [Google Scholar]
  36. Wange R. L., Samelson L. E. Complex complexes: signaling at the TCR. Immunity. 1996 Sep;5(3):197–205. doi: 10.1016/s1074-7613(00)80315-5. [DOI] [PubMed] [Google Scholar]
  37. Weil R., Cloutier J. F., Fournel M., Veillette A. Regulation of Zap-70 by Src family tyrosine protein kinases in an antigen-specific T-cell line. J Biol Chem. 1995 Feb 10;270(6):2791–2799. doi: 10.1074/jbc.270.6.2791. [DOI] [PubMed] [Google Scholar]
  38. Weiss A., Littman D. R. Signal transduction by lymphocyte antigen receptors. Cell. 1994 Jan 28;76(2):263–274. doi: 10.1016/0092-8674(94)90334-4. [DOI] [PubMed] [Google Scholar]
  39. Weissman A. M., Baniyash M., Hou D., Samelson L. E., Burgess W. H., Klausner R. D. Molecular cloning of the zeta chain of the T cell antigen receptor. Science. 1988 Feb 26;239(4843):1018–1021. doi: 10.1126/science.3278377. [DOI] [PubMed] [Google Scholar]
  40. Weissman A. M., Hou D., Orloff D. G., Modi W. S., Seuanez H., O'Brien S. J., Klausner R. D. Molecular cloning and chromosomal localization of the human T-cell receptor zeta chain: distinction from the molecular CD3 complex. Proc Natl Acad Sci U S A. 1988 Dec;85(24):9709–9713. doi: 10.1073/pnas.85.24.9709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Zhang J., Berenstein E. H., Evans R. L., Siraganian R. P. Transfection of Syk protein tyrosine kinase reconstitutes high affinity IgE receptor-mediated degranulation in a Syk-negative variant of rat basophilic leukemia RBL-2H3 cells. J Exp Med. 1996 Jul 1;184(1):71–79. doi: 10.1084/jem.184.1.71. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. van Oers N. S., Lowin-Kropf B., Finlay D., Connolly K., Weiss A. alpha beta T cell development is abolished in mice lacking both Lck and Fyn protein tyrosine kinases. Immunity. 1996 Nov;5(5):429–436. doi: 10.1016/s1074-7613(00)80499-9. [DOI] [PubMed] [Google Scholar]
  43. van Oers N. S., Weiss A. The Syk/ZAP-70 protein tyrosine kinase connection to antigen receptor signalling processes. Semin Immunol. 1995 Aug;7(4):227–236. doi: 10.1006/smim.1995.0027. [DOI] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES