Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1997 Aug;17(8):4730–4737. doi: 10.1128/mcb.17.8.4730

Evidence for a role for galectin-1 in pre-mRNA splicing.

A Vyakarnam 1, S F Dagher 1, J L Wang 1, R J Patterson 1
PMCID: PMC232325  PMID: 9234729

Abstract

Galectins are a family of beta-galactoside-binding proteins that contain characteristic amino acid sequences in the carbohydrate recognition domain (CRD) of the polypeptide. The polypeptide of galectin-1 contains a single domain, the CRD. The polypeptide of galectin-3 has two domains, a carboxyl-terminal CRD fused onto a proline- and glycine-rich amino-terminal domain. In previous studies, we showed that galectin-3 is a required factor in the splicing of nuclear pre-mRNA, assayed in a cell-free system. We now document that (i) nuclear extracts derived from HeLa cells contain both galectins-1 and -3; (ii) depletion of both galectins from the nuclear extract either by lactose affinity adsorption or by double-antibody adsorption results in a concomitant loss of splicing activity; (iii) depletion of either galectin-1 or galectin-3 by specific antibody adsorption fails to remove all of the splicing activity, and the residual splicing activity is still saccharide inhibitable; (iv) either galectin-1 or galectin-3 alone is sufficient to reconstitute, at least partially, the splicing activity of nuclear extracts depleted of both galectins; and (v) although the carbohydrate recognition domain of galectin-3 (or galectin-1) is sufficient to restore splicing activity to a galectin-depleted nuclear extract, the concentration required for reconstitution is greater than that of the full-length galectin-3 polypeptide. Consistent with these functional results, double-immunofluorescence analyses show that within the nucleus, galectin-3 colocalizes with the speckled structures observed with splicing factor SC35. Similar results are also obtained with galectin-1, although in this case, there are areas of galectin-1 devoid of SC35 and vice versa. Thus, nuclear galectins exhibit functional redundancy in their splicing activity and partition, at least partially, in the nucleoplasm with another known splicing factor.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agrwal N., Sun Q., Wang S. Y., Wang J. L. Carbohydrate-binding protein 35. I. Properties of the recombinant polypeptide and the individuality of the domains. J Biol Chem. 1993 Jul 15;268(20):14932–14939. [PubMed] [Google Scholar]
  2. Barondes S. H., Cooper D. N., Gitt M. A., Leffler H. Galectins. Structure and function of a large family of animal lectins. J Biol Chem. 1994 Aug 19;269(33):20807–20810. [PubMed] [Google Scholar]
  3. Beyer E. C., Zweig S. E., Barondes S. H. Two lactose binding lectins from chicken tissues. Purified lectin from intestine is different from those in liver and muscle. J Biol Chem. 1980 May 10;255(9):4236–4239. [PubMed] [Google Scholar]
  4. Bourne Y., Bolgiano B., Liao D. I., Strecker G., Cantau P., Herzberg O., Feizi T., Cambillau C. Crosslinking of mammalian lectin (galectin-1) by complex biantennary saccharides. Nat Struct Biol. 1994 Dec;1(12):863–870. doi: 10.1038/nsb1294-863. [DOI] [PubMed] [Google Scholar]
  5. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  6. Briles E. B., Gregory W., Fletcher P., Kornfeld S. Vertebrate lectins, Comparison of properties of beta-galactoside-binding lectins from tissues of calf and chicken. J Cell Biol. 1979 Jun;81(3):528–537. doi: 10.1083/jcb.81.3.528. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cherayil B. J., Weiner S. J., Pillai S. The Mac-2 antigen is a galactose-specific lectin that binds IgE. J Exp Med. 1989 Dec 1;170(6):1959–1972. doi: 10.1084/jem.170.6.1959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cho M., Cummings R. D. Galectin-1, a beta-galactoside-binding lectin in Chinese hamster ovary cells. I. Physical and chemical characterization. J Biol Chem. 1995 Mar 10;270(10):5198–5206. doi: 10.1074/jbc.270.10.5198. [DOI] [PubMed] [Google Scholar]
  9. Colnot C., Ripoche M. A., Scaerou F., Foulis D., Poirier F. Galectins in mouse embryogenesis. Biochem Soc Trans. 1996 Feb;24(1):141–146. doi: 10.1042/bst0240141. [DOI] [PubMed] [Google Scholar]
  10. Cooper D. N., Massa S. M., Barondes S. H. Endogenous muscle lectin inhibits myoblast adhesion to laminin. J Cell Biol. 1991 Dec;115(5):1437–1448. doi: 10.1083/jcb.115.5.1437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Cowles E. A., Agrwal N., Anderson R. L., Wang J. L. Carbohydrate-binding protein 35. Isoelectric points of the polypeptide and a phosphorylated derivative. J Biol Chem. 1990 Oct 15;265(29):17706–17712. [PubMed] [Google Scholar]
  12. Dagher S. F., Wang J. L., Patterson R. J. Identification of galectin-3 as a factor in pre-mRNA splicing. Proc Natl Acad Sci U S A. 1995 Feb 14;92(4):1213–1217. doi: 10.1073/pnas.92.4.1213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Dignam J. D., Lebovitz R. M., Roeder R. G. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 1983 Mar 11;11(5):1475–1489. doi: 10.1093/nar/11.5.1475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Fakan S., Leser G., Martin T. E. Ultrastructural distribution of nuclear ribonucleoproteins as visualized by immunocytochemistry on thin sections. J Cell Biol. 1984 Jan;98(1):358–363. doi: 10.1083/jcb.98.1.358. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Fakan S., Puvion E. The ultrastructural visualization of nucleolar and extranucleolar RNA synthesis and distribution. Int Rev Cytol. 1980;65:255–299. doi: 10.1016/s0074-7696(08)61962-2. [DOI] [PubMed] [Google Scholar]
  16. Fu X. D., Maniatis T. Factor required for mammalian spliceosome assembly is localized to discrete regions in the nucleus. Nature. 1990 Feb 1;343(6257):437–441. doi: 10.1038/343437a0. [DOI] [PubMed] [Google Scholar]
  17. Ho M. K., Springer T. A. Mac-2, a novel 32,000 Mr mouse macrophage subpopulation-specific antigen defined by monoclonal antibodies. J Immunol. 1982 Mar;128(3):1221–1228. [PubMed] [Google Scholar]
  18. Hsu D. K., Zuberi R. I., Liu F. T. Biochemical and biophysical characterization of human recombinant IgE-binding protein, an S-type animal lectin. J Biol Chem. 1992 Jul 15;267(20):14167–14174. [PubMed] [Google Scholar]
  19. Hubert M., Wang S. Y., Wang J. L., Sève A. P., Hubert J. Intranuclear distribution of galectin-3 in mouse 3T3 fibroblasts: comparative analyses by immunofluorescence and immunoelectron microscopy. Exp Cell Res. 1995 Oct;220(2):397–406. doi: 10.1006/excr.1995.1331. [DOI] [PubMed] [Google Scholar]
  20. Huflejt M. E., Turck C. W., Lindstedt R., Barondes S. H., Leffler H. L-29, a soluble lactose-binding lectin, is phosphorylated on serine 6 and serine 12 in vivo and by casein kinase I. J Biol Chem. 1993 Dec 15;268(35):26712–26718. [PubMed] [Google Scholar]
  21. Kasai K., Hirabayashi J. Galectins: a family of animal lectins that decipher glycocodes. J Biochem. 1996 Jan;119(1):1–8. doi: 10.1093/oxfordjournals.jbchem.a021192. [DOI] [PubMed] [Google Scholar]
  22. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  23. Laing J. G., Wang J. L. Identification of carbohydrate binding protein 35 in heterogeneous nuclear ribonucleoprotein complex. Biochemistry. 1988 Jul 12;27(14):5329–5334. doi: 10.1021/bi00414a057. [DOI] [PubMed] [Google Scholar]
  24. Lerner M. R., Steitz J. A. Antibodies to small nuclear RNAs complexed with proteins are produced by patients with systemic lupus erythematosus. Proc Natl Acad Sci U S A. 1979 Nov;76(11):5495–5499. doi: 10.1073/pnas.76.11.5495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Levi G., Teichberg V. I. Isolation and physicochemical characterization of electrolectin, a beta-D-galactoside binding lectin from the electric organ of Electrophorus electricus. J Biol Chem. 1981 Jun 10;256(11):5735–5740. [PubMed] [Google Scholar]
  26. Liao D. I., Kapadia G., Ahmed H., Vasta G. R., Herzberg O. Structure of S-lectin, a developmentally regulated vertebrate beta-galactoside-binding protein. Proc Natl Acad Sci U S A. 1994 Feb 15;91(4):1428–1432. doi: 10.1073/pnas.91.4.1428. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Massa S. M., Cooper D. N., Leffler H., Barondes S. H. L-29, an endogenous lectin, binds to glycoconjugate ligands with positive cooperativity. Biochemistry. 1993 Jan 12;32(1):260–267. doi: 10.1021/bi00052a033. [DOI] [PubMed] [Google Scholar]
  28. Mehul B., Bawumia S., Martin S. R., Hughes R. C. Structure of baby hamster kidney carbohydrate-binding protein CBP30, an S-type animal lectin. J Biol Chem. 1994 Jul 8;269(27):18250–18258. [PubMed] [Google Scholar]
  29. Moutsatsos I. K., Davis J. M., Wang J. L. Endogenous lectins from cultured cells: subcellular localization of carbohydrate-binding protein 35 in 3T3 fibroblasts. J Cell Biol. 1986 Feb;102(2):477–483. doi: 10.1083/jcb.102.2.477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Ochieng J., Platt D., Tait L., Hogan V., Raz T., Carmi P., Raz A. Structure-function relationship of a recombinant human galactoside-binding protein. Biochemistry. 1993 Apr 27;32(16):4455–4460. doi: 10.1021/bi00067a038. [DOI] [PubMed] [Google Scholar]
  31. Poirier F., Robertson E. J. Normal development of mice carrying a null mutation in the gene encoding the L14 S-type lectin. Development. 1993 Dec;119(4):1229–1236. doi: 10.1242/dev.119.4.1229. [DOI] [PubMed] [Google Scholar]
  32. Roff C. F., Wang J. L. Endogenous lectins from cultured cells. Isolation and characterization of carbohydrate-binding proteins from 3T3 fibroblasts. J Biol Chem. 1983 Sep 10;258(17):10657–10663. [PubMed] [Google Scholar]
  33. Spector D. L., Fu X. D., Maniatis T. Associations between distinct pre-mRNA splicing components and the cell nucleus. EMBO J. 1991 Nov;10(11):3467–3481. doi: 10.1002/j.1460-2075.1991.tb04911.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Spector D. L. Higher order nuclear organization: three-dimensional distribution of small nuclear ribonucleoprotein particles. Proc Natl Acad Sci U S A. 1990 Jan;87(1):147–151. doi: 10.1073/pnas.87.1.147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Spector D. L., O'Keefe R. T., Jiménez-García L. F. Dynamics of transcription and pre-mRNA splicing within the mammalian cell nucleus. Cold Spring Harb Symp Quant Biol. 1993;58:799–805. doi: 10.1101/sqb.1993.058.01.087. [DOI] [PubMed] [Google Scholar]
  36. Wang L., Inohara H., Pienta K. J., Raz A. Galectin-3 is a nuclear matrix protein which binds RNA. Biochem Biophys Res Commun. 1995 Dec 5;217(1):292–303. doi: 10.1006/bbrc.1995.2777. [DOI] [PubMed] [Google Scholar]
  37. Xing Y. G., Lawrence J. B. Preservation of specific RNA distribution within the chromatin-depleted nuclear substructure demonstrated by in situ hybridization coupled with biochemical fractionation. J Cell Biol. 1991 Mar;112(6):1055–1063. doi: 10.1083/jcb.112.6.1055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Xing Y., Johnson C. V., Moen P. T., Jr, McNeil J. A., Lawrence J. Nonrandom gene organization: structural arrangements of specific pre-mRNA transcription and splicing with SC-35 domains. J Cell Biol. 1995 Dec;131(6 Pt 2):1635–1647. doi: 10.1083/jcb.131.6.1635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Zeng C., Kim E., Warren S. L., Berget S. M. Dynamic relocation of transcription and splicing factors dependent upon transcriptional activity. EMBO J. 1997 Mar 17;16(6):1401–1412. doi: 10.1093/emboj/16.6.1401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Zillmann M., Zapp M. L., Berget S. M. Gel electrophoretic isolation of splicing complexes containing U1 small nuclear ribonucleoprotein particles. Mol Cell Biol. 1988 Feb;8(2):814–821. doi: 10.1128/mcb.8.2.814. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES