Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1997 Sep;17(9):5016–5022. doi: 10.1128/mcb.17.9.5016

Nijmegen breakage syndrome cells fail to induce the p53-mediated DNA damage response following exposure to ionizing radiation.

W Jongmans 1, M Vuillaume 1, K Chrzanowska 1, D Smeets 1, K Sperling 1, J Hall 1
PMCID: PMC232352  PMID: 9271379

Abstract

The functionality of the p53-mediated pathway, activated in response to DNA damage, has been assessed in primary fibroblast cell cultures and Epstein-Barr virus-transformed lymphoblastoid cell lines derived from Nijmegen breakage syndrome (NBS) patients. This autosomal recessive disease is characterized by microcephaly, growth and mental retardation, chromosomal instability, radiosensitivity, and high cancer incidence. The recent mapping of the NBS gene to chromosome 8q21 demonstrates that NBS is genetically distinct from ataxia telangiectasia (AT). Changes in p53 protein levels were significantly reduced and delayed in all the NBS fibroblast cell cultures and lymphoblastoid cell lines examined compared to normal cultures over a 4-h period postirradiation (5 Gy). The transcriptional activation of p21(WAF1/CIP1) mRNA was also lower in 12 NBS fibroblast cultures examined. In agreement with an abrogated p53 function, NBS cells exposed to ionizing radiation show an abnormal cell cycle arrest at G1-S and a prolonged accumulation of cells in the G2 phase. In contrast, exposure to the alkylating agent methyl methanesulfonate results in similar increases of p53 and p21(WAF1/CIP1) mRNA in both cell types. The ATM gene transcript was found to be expressed at similar levels in NBS and normal cells, whereas it was strongly reduced in the AT homozygote cells examined. These results suggest that the ATM gene product cannot substitute for that of the NBS gene in the signaling of cellular damage produced by ionizing radiation and that both are involved in the activation of p53. The suboptimal p53-mediated response could contribute to the high cancer risk and radiosensitivity seen in NBS patients.

Full Text

The Full Text of this article is available as a PDF (559.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agarwal M. L., Agarwal A., Taylor W. R., Stark G. R. p53 controls both the G2/M and the G1 cell cycle checkpoints and mediates reversible growth arrest in human fibroblasts. Proc Natl Acad Sci U S A. 1995 Aug 29;92(18):8493–8497. doi: 10.1073/pnas.92.18.8493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Artuso M., Esteve A., Brésil H., Vuillaume M., Hall J. The role of the Ataxia telangiectasia gene in the p53, WAF1/CIP1(p21)- and GADD45-mediated response to DNA damage produced by ionising radiation. Oncogene. 1995 Oct 19;11(8):1427–1435. [PubMed] [Google Scholar]
  3. Bentley N. J., Holtzman D. A., Flaggs G., Keegan K. S., DeMaggio A., Ford J. C., Hoekstra M., Carr A. M. The Schizosaccharomyces pombe rad3 checkpoint gene. EMBO J. 1996 Dec 2;15(23):6641–6651. [PMC free article] [PubMed] [Google Scholar]
  4. Chrzanowska K. H., Kleijer W. J., Krajewska-Walasek M., Białecka M., Gutkowska A., Goryluk-Kozakiewicz B., Michałkiewicz J., Stachowski J., Gregorek H., Lysón-Wojciechowska G. Eleven Polish patients with microcephaly, immunodeficiency, and chromosomal instability: the Nijmegen breakage syndrome. Am J Med Genet. 1995 Jul 3;57(3):462–471. doi: 10.1002/ajmg.1320570321. [DOI] [PubMed] [Google Scholar]
  5. Cole J., Arlett C. F., Green M. H., Harcourt S. A., Priestley A., Henderson L., Cole H., James S. E., Richmond F. Comparative human cellular radiosensitivity: II. The survival following gamma-irradiation of unstimulated (G0) T-lymphocytes, T-lymphocyte lines, lymphoblastoid cell lines and fibroblasts from normal donors, from ataxia-telangiectasia patients and from ataxia-telangiectasia heterozygotes. Int J Radiat Biol. 1988 Dec;54(6):929–943. doi: 10.1080/09553008814552331. [DOI] [PubMed] [Google Scholar]
  6. Cross S. M., Sanchez C. A., Morgan C. A., Schimke M. K., Ramel S., Idzerda R. L., Raskind W. H., Reid B. J. A p53-dependent mouse spindle checkpoint. Science. 1995 Mar 3;267(5202):1353–1356. doi: 10.1126/science.7871434. [DOI] [PubMed] [Google Scholar]
  7. Di Leonardo A., Linke S. P., Clarkin K., Wahl G. M. DNA damage triggers a prolonged p53-dependent G1 arrest and long-term induction of Cip1 in normal human fibroblasts. Genes Dev. 1994 Nov 1;8(21):2540–2551. doi: 10.1101/gad.8.21.2540. [DOI] [PubMed] [Google Scholar]
  8. Dolganov G. M., Maser R. S., Novikov A., Tosto L., Chong S., Bressan D. A., Petrini J. H. Human Rad50 is physically associated with human Mre11: identification of a conserved multiprotein complex implicated in recombinational DNA repair. Mol Cell Biol. 1996 Sep;16(9):4832–4841. doi: 10.1128/mcb.16.9.4832. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gilad S., Khosravi R., Shkedy D., Uziel T., Ziv Y., Savitsky K., Rotman G., Smith S., Chessa L., Jorgensen T. J. Predominance of null mutations in ataxia-telangiectasia. Hum Mol Genet. 1996 Apr;5(4):433–439. doi: 10.1093/hmg/5.4.433. [DOI] [PubMed] [Google Scholar]
  10. Green A. J., Yates J. R., Taylor A. M., Biggs P., McGuire G. M., McConville C. M., Billing C. J., Barnes N. D. Severe microcephaly with normal intellectual development: the Nijmegen breakage syndrome. Arch Dis Child. 1995 Nov;73(5):431–434. doi: 10.1136/adc.73.5.431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hartley K. O., Gell D., Smith G. C., Zhang H., Divecha N., Connelly M. A., Admon A., Lees-Miller S. P., Anderson C. W., Jackson S. P. DNA-dependent protein kinase catalytic subunit: a relative of phosphatidylinositol 3-kinase and the ataxia telangiectasia gene product. Cell. 1995 Sep 8;82(5):849–856. doi: 10.1016/0092-8674(95)90482-4. [DOI] [PubMed] [Google Scholar]
  12. Jaspers N. G., Gatti R. A., Baan C., Linssen P. C., Bootsma D. Genetic complementation analysis of ataxia telangiectasia and Nijmegen breakage syndrome: a survey of 50 patients. Cytogenet Cell Genet. 1988;49(4):259–263. doi: 10.1159/000132673. [DOI] [PubMed] [Google Scholar]
  13. Jung M., Kondratyev A., Lee S. A., Dimtchev A., Dritschilo A. ATM gene product phosphorylates I kappa B-alpha. Cancer Res. 1997 Jan 1;57(1):24–27. [PubMed] [Google Scholar]
  14. Kanaar R., Troelstra C., Swagemakers S. M., Essers J., Smit B., Franssen J. H., Pastink A., Bezzubova O. Y., Buerstedde J. M., Clever B. Human and mouse homologs of the Saccharomyces cerevisiae RAD54 DNA repair gene: evidence for functional conservation. Curr Biol. 1996 Jul 1;6(7):828–838. doi: 10.1016/s0960-9822(02)00606-1. [DOI] [PubMed] [Google Scholar]
  15. Kastan M. B., Onyekwere O., Sidransky D., Vogelstein B., Craig R. W. Participation of p53 protein in the cellular response to DNA damage. Cancer Res. 1991 Dec 1;51(23 Pt 1):6304–6311. [PubMed] [Google Scholar]
  16. Kastan M. B., Zhan Q., el-Deiry W. S., Carrier F., Jacks T., Walsh W. V., Plunkett B. S., Vogelstein B., Fornace A. J., Jr A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell. 1992 Nov 13;71(4):587–597. doi: 10.1016/0092-8674(92)90593-2. [DOI] [PubMed] [Google Scholar]
  17. Keegan K. S., Holtzman D. A., Plug A. W., Christenson E. R., Brainerd E. E., Flaggs G., Bentley N. J., Taylor E. M., Meyn M. S., Moss S. B. The Atr and Atm protein kinases associate with different sites along meiotically pairing chromosomes. Genes Dev. 1996 Oct 1;10(19):2423–2437. doi: 10.1101/gad.10.19.2423. [DOI] [PubMed] [Google Scholar]
  18. Khanna K. K., Lavin M. F. Ionizing radiation and UV induction of p53 protein by different pathways in ataxia-telangiectasia cells. Oncogene. 1993 Dec;8(12):3307–3312. [PubMed] [Google Scholar]
  19. Ko L. J., Prives C. p53: puzzle and paradigm. Genes Dev. 1996 May 1;10(9):1054–1072. doi: 10.1101/gad.10.9.1054. [DOI] [PubMed] [Google Scholar]
  20. Komatsu K., Matsuura S., Tauchi H., Endo S., Kodama S., Smeets D., Weemaes C., Oshimura M. The gene for Nijmegen breakage syndrome (V2) is not located on chromosome 11. Am J Hum Genet. 1996 Apr;58(4):885–888. [PMC free article] [PubMed] [Google Scholar]
  21. Lieberman H. B., Hopkins K. M., Nass M., Demetrick D., Davey S. A human homolog of the Schizosaccharomyces pombe rad9+ checkpoint control gene. Proc Natl Acad Sci U S A. 1996 Nov 26;93(24):13890–13895. doi: 10.1073/pnas.93.24.13890. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Maltzman W., Czyzyk L. UV irradiation stimulates levels of p53 cellular tumor antigen in nontransformed mouse cells. Mol Cell Biol. 1984 Sep;4(9):1689–1694. doi: 10.1128/mcb.4.9.1689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. McKay M. J., Troelstra C., van der Spek P., Kanaar R., Smit B., Hagemeijer A., Bootsma D., Hoeijmakers J. H. Sequence conservation of the rad21 Schizosaccharomyces pombe DNA double-strand break repair gene in human and mouse. Genomics. 1996 Sep 1;36(2):305–315. doi: 10.1006/geno.1996.0466. [DOI] [PubMed] [Google Scholar]
  24. Murnane J. P., Schwartz J. L. Cell checkpoint and radiosensitivity. Nature. 1993 Sep 2;365(6441):22–22. doi: 10.1038/365022a0. [DOI] [PubMed] [Google Scholar]
  25. Pellegata N. S., Antoniono R. J., Redpath J. L., Stanbridge E. J. DNA damage and p53-mediated cell cycle arrest: a reevaluation. Proc Natl Acad Sci U S A. 1996 Dec 24;93(26):15209–15214. doi: 10.1073/pnas.93.26.15209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Petrini J. H., Walsh M. E., DiMare C., Chen X. N., Korenberg J. R., Weaver D. T. Isolation and characterization of the human MRE11 homologue. Genomics. 1995 Sep 1;29(1):80–86. doi: 10.1006/geno.1995.1217. [DOI] [PubMed] [Google Scholar]
  27. Saar K., Chrzanowska K. H., Stumm M., Jung M., Nürnberg G., Wienker T. F., Seemanová E., Wegner R. D., Reis A., Sperling K. The gene for the ataxia-telangiectasia variant, Nijmegen breakage syndrome, maps to a 1-cM interval on chromosome 8q21. Am J Hum Genet. 1997 Mar;60(3):605–610. [PMC free article] [PubMed] [Google Scholar]
  28. Savitsky K., Bar-Shira A., Gilad S., Rotman G., Ziv Y., Vanagaite L., Tagle D. A., Smith S., Uziel T., Sfez S. A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science. 1995 Jun 23;268(5218):1749–1753. doi: 10.1126/science.7792600. [DOI] [PubMed] [Google Scholar]
  29. Shiloh Y. Ataxia-telangiectasia: closer to unraveling the mystery. Eur J Hum Genet. 1995;3(2):116–138. doi: 10.1159/000472285. [DOI] [PubMed] [Google Scholar]
  30. Stewart N., Hicks G. G., Paraskevas F., Mowat M. Evidence for a second cell cycle block at G2/M by p53. Oncogene. 1995 Jan 5;10(1):109–115. [PubMed] [Google Scholar]
  31. Stumm M., Gatti R. A., Reis A., Udar N., Chrzanowska K., Seemanova E., Sperling K., Wegner R. D. The ataxia-telangiectasia-variant genes 1 and 2 are distinct from the ataxia-telangiectasia gene on chromosome 11q23.1. Am J Hum Genet. 1995 Oct;57(4):960–962. [PMC free article] [PubMed] [Google Scholar]
  32. Stumm M., Sperling K., Wegner R. D. Noncomplementation of radiation-induced chromosome aberrations in ataxia-telangiectasia/ataxia-telangiectasia-variant heterodikaryons. Am J Hum Genet. 1997 May;60(5):1246–1251. [PMC free article] [PubMed] [Google Scholar]
  33. Sullivan K. E., Veksler E., Lederman H., Lees-Miller S. P. Cell cycle checkpoints and DNA repair in Nijmegen breakage syndrome. Clin Immunol Immunopathol. 1997 Jan;82(1):43–48. doi: 10.1006/clin.1996.4275. [DOI] [PubMed] [Google Scholar]
  34. Thacker J. Cellular radiosensitivity in ataxia-telangiectasia. Int J Radiat Biol. 1994 Dec;66(6 Suppl):S87–S96. [PubMed] [Google Scholar]
  35. Weemaes C. M., Hustinx T. W., Scheres J. M., van Munster P. J., Bakkeren J. A., Taalman R. D. A new chromosomal instability disorder: the Nijmegen breakage syndrome. Acta Paediatr Scand. 1981 Jul;70(4):557–564. doi: 10.1111/j.1651-2227.1981.tb05740.x. [DOI] [PubMed] [Google Scholar]
  36. Weemaes C. M., Smeets D. F., van der Burgt C. J. Nijmegen Breakage syndrome: a progress report. Int J Radiat Biol. 1994 Dec;66(6 Suppl):S185–S188. [PubMed] [Google Scholar]
  37. Wegner R. D., Metzger M., Hanefeld F., Jaspers N. G., Baan C., Magdorf K., Kunze J., Sperling K. A new chromosomal instability disorder confirmed by complementation studies. Clin Genet. 1988 Jan;33(1):20–32. [PubMed] [Google Scholar]
  38. Zdzienicka M. Z. Mammalian mutants defective in the response to ionizing radiation-induced DNA damage. Mutat Res. 1995 May;336(3):203–213. doi: 10.1016/0921-8777(95)00003-3. [DOI] [PubMed] [Google Scholar]
  39. Zhan Q., Carrier F., Fornace A. J., Jr Induction of cellular p53 activity by DNA-damaging agents and growth arrest. Mol Cell Biol. 1993 Jul;13(7):4242–4250. doi: 10.1128/mcb.13.7.4242. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. van der Burgt I., Chrzanowska K. H., Smeets D., Weemaes C. Nijmegen breakage syndrome. J Med Genet. 1996 Feb;33(2):153–156. doi: 10.1136/jmg.33.2.153. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES