Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1997 Sep;17(9):5053–5066. doi: 10.1128/mcb.17.9.5053

The nuclear orphan receptors COUP-TF and ARP-1 positively regulate the trout estrogen receptor gene through enhancing autoregulation.

G Lazennec 1, L Kern 1, Y Valotaire 1, G Salbert 1
PMCID: PMC232356  PMID: 9271383

Abstract

The rainbow trout estrogen receptor (rtER) is a positively autoregulated gene in liver cells. In a previous report, we showed that upregulation is mediated by an estrogen response element (ERE) located in the proximal promoter of the gene and that a half binding site for nuclear receptors (5'-TGACCT-3') located 15 bp upstream of the ERE is involved in the magnitude of the estrogen response. We now report that the human orphan receptor COUP-TF and a COUP-TF-like protein from trout liver are able to bind to the consensus half-site. When cotransfected with the rtER gene proximal promoter, COUP-TF had no regulatory functions on its own. Interestingly, COUP-TF enhanced rtER transactivation properties in the presence of estradiol in a dose-dependent manner when cotransfected with the rtER gene promoter. Unliganded retinoid receptor heterodimers had the same helper function as COUP-TF in the presence of estradiol but were switched to repressors when the ligand all-trans-retinoic acid was added. Mutation of the consensus half-site only slightly reduced COUP-TF helper function, suggesting that it actually results from a complex mechanism that probably involves both DNA binding of COUP-TF to the promoter and protein-protein interaction with another transcription factor bound to the promoter. Nevertheless, a DNA-binding-defective mutant of COUP-TF was also defective in ER helper function. Competition footprinting analysis suggested that COUP-TF actually establishes contacts with the consensus upstream half-site and the downstream ERE half-site that would form a DR-24-like response element. Interaction of COUP-TF with the DR-24 element was confirmed in footprinting assays by using nuclear extracts from Saccharomyces cerevisiae expressing COUP-TF. Finally, interaction of COUP-TF with mutants of the rtER gene promoter showed that COUP-TF recognizes the ERE when the upstream half-site is mutated. These data show that COUP-TF may activate transcription through interaction with other nuclear receptors. This cross-talk between liganded nuclear receptors and orphan receptors is likely to modulate the spectrum of action of a particular ligand-receptor complex and may participate in the cell-type specificity of the ligand effect.

Full Text

The Full Text of this article is available as a PDF (2.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balaguer P., Demirpence E., Pons M., Gagne D., Bocquel M. T., Gronemeyer H., Nicolas J. C. L'acide rétinoïque a un effet antioestrogénique sur différents gènes oestrogéno-régulés dans différents types cellulaires. C R Seances Soc Biol Fil. 1991;185(6):434–443. [PubMed] [Google Scholar]
  2. Bendik I., Pfahl M. Similar ligand-induced conformational changes of thyroid hormone receptors regulate homo- and heterodimeric functions. J Biol Chem. 1995 Feb 17;270(7):3107–3114. doi: 10.1074/jbc.270.7.3107. [DOI] [PubMed] [Google Scholar]
  3. Berkenstam A., Glaumann H., Martin M., Gustafsson J. A., Norstedt G. Hormonal regulation of estrogen receptor messenger ribonucleic acid in T47Dco and MCF-7 breast cancer cells. Mol Endocrinol. 1989 Jan;3(1):22–28. doi: 10.1210/mend-3-1-22. [DOI] [PubMed] [Google Scholar]
  4. Cavaillès V., Dauvois S., L'Horset F., Lopez G., Hoare S., Kushner P. J., Parker M. G. Nuclear factor RIP140 modulates transcriptional activation by the estrogen receptor. EMBO J. 1995 Aug 1;14(15):3741–3751. doi: 10.1002/j.1460-2075.1995.tb00044.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chan S. M., Xu N., Niemeyer C. C., Bone J. R., Flytzanis C. N. SpCOUP-TF: a sea urchin member of the steroid/thyroid hormone receptor family. Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10568–10572. doi: 10.1073/pnas.89.22.10568. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cooney A. J., Tsai S. Y., O'Malley B. W., Tsai M. J. Chicken ovalbumin upstream promoter transcription factor (COUP-TF) dimers bind to different GGTCA response elements, allowing COUP-TF to repress hormonal induction of the vitamin D3, thyroid hormone, and retinoic acid receptors. Mol Cell Biol. 1992 Sep;12(9):4153–4163. doi: 10.1128/mcb.12.9.4153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Delaunay F., Pakdel F., Valotaire Y. Effect of in vivo oestradiol treatment on cell-free transcription in trout liver nuclear extracts. J Mol Endocrinol. 1994 Oct;13(2):137–147. doi: 10.1677/jme.0.0130137. [DOI] [PubMed] [Google Scholar]
  8. Demirpence E., Balaguer P., Trousse F., Nicolas J. C., Pons M., Gagne D. Antiestrogenic effects of all-trans-retinoic acid and 1,25-dihydroxyvitamin D3 in breast cancer cells occur at the estrogen response element level but through different molecular mechanisms. Cancer Res. 1994 Mar 15;54(6):1458–1464. [PubMed] [Google Scholar]
  9. Drean Y. L., Liu D., Wong A. O., Xiong F., Hew C. L. Steroidogenic factor 1 and estradiol receptor act in synergism to regulate the expression of the salmon gonadotropin II beta subunit gene. Mol Endocrinol. 1996 Mar;10(3):217–229. doi: 10.1210/mend.10.3.8833651. [DOI] [PubMed] [Google Scholar]
  10. Evans R. M. The steroid and thyroid hormone receptor superfamily. Science. 1988 May 13;240(4854):889–895. doi: 10.1126/science.3283939. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fjose A., Nornes S., Weber U., Mlodzik M. Functional conservation of vertebrate seven-up related genes in neurogenesis and eye development. EMBO J. 1993 Apr;12(4):1403–1414. doi: 10.1002/j.1460-2075.1993.tb05784.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fjose A., Weber U., Mlodzik M. A novel vertebrate svp-related nuclear receptor is expressed as a step gradient in developing rhombomeres and is affected by retinoic acid. Mech Dev. 1995 Aug;52(2-3):233–246. doi: 10.1016/0925-4773(95)00404-o. [DOI] [PubMed] [Google Scholar]
  13. Flouriot G., Pakdel F., Valotaire Y. Transcriptional and post-transcriptional regulation of rainbow trout estrogen receptor and vitellogenin gene expression. Mol Cell Endocrinol. 1996 Nov 29;124(1-2):173–183. doi: 10.1016/s0303-7207(96)03960-3. [DOI] [PubMed] [Google Scholar]
  14. Foster J. S., Wimalasena J. Estrogen regulates activity of cyclin-dependent kinases and retinoblastoma protein phosphorylation in breast cancer cells. Mol Endocrinol. 1996 May;10(5):488–498. doi: 10.1210/mend.10.5.8732680. [DOI] [PubMed] [Google Scholar]
  15. Gaudet F., Ginsburg G. S. Transcriptional regulation of the cholesteryl ester transfer protein gene by the orphan nuclear hormone receptor apolipoprotein AI regulatory protein-1. J Biol Chem. 1995 Dec 15;270(50):29916–29922. doi: 10.1074/jbc.270.50.29916. [DOI] [PubMed] [Google Scholar]
  16. Grandien K., Bäckdahl M., Ljunggren O., Gustafsson J. A., Berkenstam A. Estrogen target tissue determines alternative promoter utilization of the human estrogen receptor gene in osteoblasts and tumor cell lines. Endocrinology. 1995 May;136(5):2223–2229. doi: 10.1210/endo.136.5.7720671. [DOI] [PubMed] [Google Scholar]
  17. Green S., Chambon P. Nuclear receptors enhance our understanding of transcription regulation. Trends Genet. 1988 Nov;4(11):309–314. doi: 10.1016/0168-9525(88)90108-4. [DOI] [PubMed] [Google Scholar]
  18. Halachmi S., Marden E., Martin G., MacKay H., Abbondanza C., Brown M. Estrogen receptor-associated proteins: possible mediators of hormone-induced transcription. Science. 1994 Jun 3;264(5164):1455–1458. doi: 10.1126/science.8197458. [DOI] [PubMed] [Google Scholar]
  19. Hall R. K., Sladek F. M., Granner D. K. The orphan receptors COUP-TF and HNF-4 serve as accessory factors required for induction of phosphoenolpyruvate carboxykinase gene transcription by glucocorticoids. Proc Natl Acad Sci U S A. 1995 Jan 17;92(2):412–416. doi: 10.1073/pnas.92.2.412. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hoshizaki D. K., Blackburn T., Price C., Ghosh M., Miles K., Ragucci M., Sweis R. Embryonic fat-cell lineage in Drosophila melanogaster. Development. 1994 Sep;120(9):2489–2499. doi: 10.1242/dev.120.9.2489. [DOI] [PubMed] [Google Scholar]
  21. Hoshizaki D. K., Lunz R., Ghosh M., Johnson W. Identification of fat-cell enhancer activity in Drosophila melanogaster using P-element enhancer traps. Genome. 1995 Jun;38(3):497–506. doi: 10.1139/g95-065. [DOI] [PubMed] [Google Scholar]
  22. Jonk L. J., de Jonge M. E., Pals C. E., Wissink S., Vervaart J. M., Schoorlemmer J., Kruijer W. Cloning and expression during development of three murine members of the COUP family of nuclear orphan receptors. Mech Dev. 1994 Jul;47(1):81–97. doi: 10.1016/0925-4773(94)90098-1. [DOI] [PubMed] [Google Scholar]
  23. Kato S., Sasaki H., Suzawa M., Masushige S., Tora L., Chambon P., Gronemeyer H. Widely spaced, directly repeated PuGGTCA elements act as promiscuous enhancers for different classes of nuclear receptors. Mol Cell Biol. 1995 Nov;15(11):5858–5867. doi: 10.1128/mcb.15.11.5858. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Keaveney M., Klug J., Gannon F. Sequence analysis of the 5' flanking region of the human estrogen receptor gene. DNA Seq. 1992;2(6):347–358. doi: 10.3109/10425179209020816. [DOI] [PubMed] [Google Scholar]
  25. Kirkland J. L., LaPointe L., Justin E., Stancel G. M. Effects of estrogen on mitosis in individual cell types of the immature rat uterus. Biol Reprod. 1979 Sep;21(2):269–272. doi: 10.1095/biolreprod21.2.269. [DOI] [PubMed] [Google Scholar]
  26. Kliewer S. A., Umesono K., Heyman R. A., Mangelsdorf D. J., Dyck J. A., Evans R. M. Retinoid X receptor-COUP-TF interactions modulate retinoic acid signaling. Proc Natl Acad Sci U S A. 1992 Feb 15;89(4):1448–1452. doi: 10.1073/pnas.89.4.1448. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Korach K. S. Insights from the study of animals lacking functional estrogen receptor. Science. 1994 Dec 2;266(5190):1524–1527. doi: 10.1126/science.7985022. [DOI] [PubMed] [Google Scholar]
  28. Kramer S., West S. R., Hiromi Y. Cell fate control in the Drosophila retina by the orphan receptor seven-up: its role in the decisions mediated by the ras signaling pathway. Development. 1995 May;121(5):1361–1372. doi: 10.1242/dev.121.5.1361. [DOI] [PubMed] [Google Scholar]
  29. Kurokawa R., Söderström M., Hörlein A., Halachmi S., Brown M., Rosenfeld M. G., Glass C. K. Polarity-specific activities of retinoic acid receptors determined by a co-repressor. Nature. 1995 Oct 5;377(6548):451–454. doi: 10.1038/377451a0. [DOI] [PubMed] [Google Scholar]
  30. Ladias J. A., Karathanasis S. K. Regulation of the apolipoprotein AI gene by ARP-1, a novel member of the steroid receptor superfamily. Science. 1991 Feb 1;251(4993):561–565. doi: 10.1126/science.1899293. [DOI] [PubMed] [Google Scholar]
  31. Lazennec G., Huignard H., Valotaire Y., Kern L. Characterization of the transcription start point of the trout estrogen receptor-encoding gene: evidence for alternative splicing in the 5' untranslated region. Gene. 1995 Dec 12;166(2):243–247. doi: 10.1016/0378-1119(95)00601-x. [DOI] [PubMed] [Google Scholar]
  32. Lazennec G., Kern L., Salbert G., Saligaut D., Valotaire Y. Cooperation between the human estrogen receptor (ER) and MCF-7 cell-specific transcription factors elicits high activity of an estrogen-inducible enhancer from the trout ER gene promoter. Mol Endocrinol. 1996 Sep;10(9):1116–1126. doi: 10.1210/mend.10.9.8885246. [DOI] [PubMed] [Google Scholar]
  33. Le Dréan Y., Lazennec G., Kern L., Saligaut D., Pakdel F., Valotaire Y. Characterization of an estrogen-responsive element implicated in regulation of the rainbow trout estrogen receptor gene. J Mol Endocrinol. 1995 Aug;15(1):37–47. doi: 10.1677/jme.0.0150037. [DOI] [PubMed] [Google Scholar]
  34. Le Roux M. G., Thézé N., Wolff J., Le Pennec J. P. Organization of a rainbow trout estrogen receptor gene. Biochim Biophys Acta. 1993 Feb 20;1172(1-2):226–230. doi: 10.1016/0167-4781(93)90302-t. [DOI] [PubMed] [Google Scholar]
  35. Legraverend C., Eguchi H., Ström A., Lahuna O., Mode A., Tollet P., Westin S., Gustafsson J. A. Transactivation of the rat CYP2C13 gene promoter involves HNF-1, HNF-3, and members of the orphan receptor subfamily. Biochemistry. 1994 Aug 23;33(33):9889–9897. doi: 10.1021/bi00199a010. [DOI] [PubMed] [Google Scholar]
  36. Liu Y., Yang N., Teng C. T. COUP-TF acts as a competitive repressor for estrogen receptor-mediated activation of the mouse lactoferrin gene. Mol Cell Biol. 1993 Mar;13(3):1836–1846. doi: 10.1128/mcb.13.3.1836. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Lu X. P., Salbert G., Pfahl M. An evolutionary conserved COUP-TF binding element in a neural-specific gene and COUP-TF expression patterns support a major role for COUP-TF in neural development. Mol Endocrinol. 1994 Dec;8(12):1774–1788. doi: 10.1210/mend.8.12.7708064. [DOI] [PubMed] [Google Scholar]
  38. Lubahn D. B., Moyer J. S., Golding T. S., Couse J. F., Korach K. S., Smithies O. Alteration of reproductive function but not prenatal sexual development after insertional disruption of the mouse estrogen receptor gene. Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):11162–11166. doi: 10.1073/pnas.90.23.11162. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Lustig R. H. Sex hormone modulation of neural development in vitro. Horm Behav. 1994 Dec;28(4):383–395. doi: 10.1006/hbeh.1994.1035. [DOI] [PubMed] [Google Scholar]
  40. Lutz B., Kuratani S., Cooney A. J., Wawersik S., Tsai S. Y., Eichele G., Tsai M. J. Developmental regulation of the orphan receptor COUP-TF II gene in spinal motor neurons. Development. 1994 Jan;120(1):25–36. doi: 10.1242/dev.120.1.25. [DOI] [PubMed] [Google Scholar]
  41. Malik S., Karathanasis S. Transcriptional activation by the orphan nuclear receptor ARP-1. Nucleic Acids Res. 1995 May 11;23(9):1536–1543. doi: 10.1093/nar/23.9.1536. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Mangelsdorf D. J., Thummel C., Beato M., Herrlich P., Schütz G., Umesono K., Blumberg B., Kastner P., Mark M., Chambon P. The nuclear receptor superfamily: the second decade. Cell. 1995 Dec 15;83(6):835–839. doi: 10.1016/0092-8674(95)90199-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Maxam A. M., Gilbert W. Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol. 1980;65(1):499–560. doi: 10.1016/s0076-6879(80)65059-9. [DOI] [PubMed] [Google Scholar]
  44. Miyajima N., Kadowaki Y., Fukushige S., Shimizu S., Semba K., Yamanashi Y., Matsubara K., Toyoshima K., Yamamoto T. Identification of two novel members of erbA superfamily by molecular cloning: the gene products of the two are highly related to each other. Nucleic Acids Res. 1988 Dec 9;16(23):11057–11074. doi: 10.1093/nar/16.23.11057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Mlodzik M., Hiromi Y., Weber U., Goodman C. S., Rubin G. M. The Drosophila seven-up gene, a member of the steroid receptor gene superfamily, controls photoreceptor cell fates. Cell. 1990 Jan 26;60(2):211–224. doi: 10.1016/0092-8674(90)90737-y. [DOI] [PubMed] [Google Scholar]
  46. O'Malley B. The steroid receptor superfamily: more excitement predicted for the future. Mol Endocrinol. 1990 Mar;4(3):363–369. doi: 10.1210/mend-4-3-363. [DOI] [PubMed] [Google Scholar]
  47. Pakdel F., Féon S., Le Gac F., Le Menn F., Valotaire Y. In vivo estrogen induction of hepatic estrogen receptor mRNA and correlation with vitellogenin mRNA in rainbow trout. Mol Cell Endocrinol. 1991 Mar;75(3):205–212. doi: 10.1016/0303-7207(91)90162-l. [DOI] [PubMed] [Google Scholar]
  48. Pakdel F., Le Guellec C., Vaillant C., Le Roux M. G., Valotaire Y. Identification and estrogen induction of two estrogen receptors (ER) messenger ribonucleic acids in the rainbow trout liver: sequence homology with other ERs. Mol Endocrinol. 1989 Jan;3(1):44–51. doi: 10.1210/mend-3-1-44. [DOI] [PubMed] [Google Scholar]
  49. Pereira F. A., Qiu Y., Tsai M. J., Tsai S. Y. Chicken ovalbumin upstream promoter transcription factor (COUP-TF): expression during mouse embryogenesis. J Steroid Biochem Mol Biol. 1995 Jun;53(1-6):503–508. doi: 10.1016/0960-0760(95)00097-j. [DOI] [PubMed] [Google Scholar]
  50. Pfahl M., Tzukerman M., Zhang X. K., Lehmann J. M., Hermann T., Wills K. N., Graupner G. Nuclear retinoic acid receptors: cloning, analysis, and function. Methods Enzymol. 1990;189:256–270. doi: 10.1016/0076-6879(90)89297-u. [DOI] [PubMed] [Google Scholar]
  51. Ponticelli A. S., Struhl K. Analysis of Saccharomyces cerevisiae his3 transcription in vitro: biochemical support for multiple mechanisms of transcription. Mol Cell Biol. 1990 Jun;10(6):2832–2839. doi: 10.1128/mcb.10.6.2832. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Power S. C., Cereghini S. Positive regulation of the vHNF1 promoter by the orphan receptors COUP-TF1/Ear3 and COUP-TFII/Arp1. Mol Cell Biol. 1996 Mar;16(3):778–791. doi: 10.1128/mcb.16.3.778. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Qiu Y., Cooney A. J., Kuratani S., DeMayo F. J., Tsai S. Y., Tsai M. J. Spatiotemporal expression patterns of chicken ovalbumin upstream promoter-transcription factors in the developing mouse central nervous system: evidence for a role in segmental patterning of the diencephalon. Proc Natl Acad Sci U S A. 1994 May 10;91(10):4451–4455. doi: 10.1073/pnas.91.10.4451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Qiu Y., Krishnan V., Pereira F. A., Tsai S. Y., Tsai M. J. Chicken ovalbumin upstream promoter-transcription factors and their regulation. J Steroid Biochem Mol Biol. 1996 Jan;56(1-6):81–85. doi: 10.1016/0960-0760(95)00225-1. [DOI] [PubMed] [Google Scholar]
  55. Read L. D., Greene G. L., Katzenellenbogen B. S. Regulation of estrogen receptor messenger ribonucleic acid and protein levels in human breast cancer cell lines by sex steroid hormones, their antagonists, and growth factors. Mol Endocrinol. 1989 Feb;3(2):295–304. doi: 10.1210/mend-3-2-295. [DOI] [PubMed] [Google Scholar]
  56. Saceda M., Lippman M. E., Chambon P., Lindsey R. L., Ponglikitmongkol M., Puente M., Martin M. B. Regulation of the estrogen receptor in MCF-7 cells by estradiol. Mol Endocrinol. 1988 Dec;2(12):1157–1162. doi: 10.1210/mend-2-12-1157. [DOI] [PubMed] [Google Scholar]
  57. Salbert G., Atteke C., Bonnec G., Jego P. Differential regulation of the estrogen receptor mRNA by estradiol in the trout hypothalamus and pituitary. Mol Cell Endocrinol. 1993 Oct;96(1-2):177–182. doi: 10.1016/0303-7207(93)90108-v. [DOI] [PubMed] [Google Scholar]
  58. Salbert G., Fanjul A., Piedrafita F. J., Lu X. P., Kim S. J., Tran P., Pfahl M. Retinoic acid receptors and retinoid X receptor-alpha down-regulate the transforming growth factor-beta 1 promoter by antagonizing AP-1 activity. Mol Endocrinol. 1993 Oct;7(10):1347–1356. doi: 10.1210/mend.7.10.8264664. [DOI] [PubMed] [Google Scholar]
  59. Schaeffer E., Guillou F., Part D., Zakin M. M. A different combination of transcription factors modulates the expression of the human transferrin promoter in liver and Sertoli cells. J Biol Chem. 1993 Nov 5;268(31):23399–23408. [PubMed] [Google Scholar]
  60. Shupnik M. A., Gordon M. S., Chin W. W. Tissue-specific regulation of rat estrogen receptor mRNAs. Mol Endocrinol. 1989 Apr;3(4):660–665. doi: 10.1210/mend-3-4-660. [DOI] [PubMed] [Google Scholar]
  61. Soule H. D., McGrath C. M. Estrogen responsive proliferation of clonal human breast carcinoma cells in athymic mice. Cancer Lett. 1980 Aug;10(2):177–189. doi: 10.1016/0304-3835(80)90042-7. [DOI] [PubMed] [Google Scholar]
  62. Tan N. S., Lam T. J., Ding J. L. The first contiguous estrogen receptor gene from a fish, Oreochromis aureus: evidence for multiple transcripts. Mol Cell Endocrinol. 1996 Jul 1;120(2):177–192. doi: 10.1016/0303-7207(96)03836-1. [DOI] [PubMed] [Google Scholar]
  63. Tan N. S., Lam T. J., Ding J. L. Transcription regulatory signals in the 5' and 3' regions of Oreochromis aureus ER gene. Mol Cell Endocrinol. 1996 Oct 30;123(2):149–161. doi: 10.1016/s0303-7207(96)03911-1. [DOI] [PubMed] [Google Scholar]
  64. Tata J. R., Baker B. S., Machuca I., Rabelo E. M., Yamauchi K. Autoinduction of nuclear receptor genes and its significance. J Steroid Biochem Mol Biol. 1993 Aug;46(2):105–119. doi: 10.1016/0960-0760(93)90286-6. [DOI] [PubMed] [Google Scholar]
  65. Teng C. T., Liu Y., Yang N., Walmer D., Panella T. Differential molecular mechanism of the estrogen action that regulates lactoferrin gene in human and mouse. Mol Endocrinol. 1992 Nov;6(11):1969–1981. doi: 10.1210/mend.6.11.1480183. [DOI] [PubMed] [Google Scholar]
  66. Tran P., Zhang X. K., Salbert G., Hermann T., Lehmann J. M., Pfahl M. COUP orphan receptors are negative regulators of retinoic acid response pathways. Mol Cell Biol. 1992 Oct;12(10):4666–4676. doi: 10.1128/mcb.12.10.4666. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Wang L. H., Ing N. H., Tsai S. Y., O'Malley B. W., Tsai M. J. The COUP-TFs compose a family of functionally related transcription factors. Gene Expr. 1991;1(3):207–216. [PMC free article] [PubMed] [Google Scholar]
  68. Wang L. H., Tsai S. Y., Cook R. G., Beattie W. G., Tsai M. J., O'Malley B. W. COUP transcription factor is a member of the steroid receptor superfamily. Nature. 1989 Jul 13;340(6229):163–166. doi: 10.1038/340163a0. [DOI] [PubMed] [Google Scholar]
  69. Wehrenberg U., Ivell R., Walther N. The COUP transcription factor (COUP-TF) is directly involved in the regulation of oxytocin gene expression in luteinizing bovine granulosa cells. Biochem Biophys Res Commun. 1992 Nov 30;189(1):496–503. doi: 10.1016/0006-291x(92)91585-e. [DOI] [PubMed] [Google Scholar]
  70. Woolley C. S., McEwen B. S. Estradiol mediates fluctuation in hippocampal synapse density during the estrous cycle in the adult rat. J Neurosci. 1992 Jul;12(7):2549–2554. doi: 10.1523/JNEUROSCI.12-07-02549.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. van der Wees J., Matharu P. J., de Roos K., Destrée O. H., Godsave S. F., Durston A. J., Sweeney G. E. Developmental expression and differential regulation by retinoic acid of Xenopus COUP-TF-A and COUP-TF-B. Mech Dev. 1996 Feb;54(2):173–184. doi: 10.1016/0925-4773(95)00471-8. [DOI] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES