Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1997 Sep;17(9):5097–5105. doi: 10.1128/mcb.17.9.5097

Identification of tumor-specific paclitaxel (Taxol)-responsive regulatory elements in the interleukin-8 promoter.

L F Lee 1, J S Haskill 1, N Mukaida 1, K Matsushima 1, J P Ting 1
PMCID: PMC232360  PMID: 9271387

Abstract

Paclitaxel (Taxol) is a novel chemotherapeutic drug that is effective against breast and ovarian cancers. Although the primary target of paclitaxel is microtubules, its efficacy exceeds that of conventional microtubule-disrupting agents, suggesting that it may have additional cellular effects. Previously, we demonstrated that paclitaxel can induce interleukin-8 (IL-8) gene expression at the transcriptional level in subsets of human ovarian cancer lines. In this as well as the previous report, we present evidence that this ability is not linked to the lipopolysaccharide pathway of IL-8 gene induction. The present study identifies the cis-acting elements and trans-acting factors involved in this induction by transfecting DNA constructs containing the 5'-flanking region of the IL-8 gene linked to the chloramphenicol acetyltransferase reporter gene into paclitaxel-responsive and nonresponsive ovarian cancer cells (responsiveness refers to the IL-8 response). Paclitaxel only activated the IL-8 promoter in responsive cells. The AP-1 and NF-kappaB binding sites in the IL-8 promoter are required for activation by paclitaxel; in contrast, a C/EBP site required for IL-8 promoter activation in other cell types is not involved. Gel shift assays demonstrate that paclitaxel causes a marked increase in protein binding to the NF-kappaB and AP-1 consensus binding sequences in the paclitaxel-responsive ovarian cells, but not the nonresponsive cells. The induction of NF-kappaB and AP-1 binding is reduced by the addition of protein kinase C inhibitors and cyclic AMP effector, respectively. These results demonstrate a molecular mechanism for cell-specific paclitaxel-induced IL-8 gene expression which may have clinical relevance.

Full Text

The Full Text of this article is available as a PDF (407.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen J. N., Moore S. A., Wewers M. D. Taxol enhances but does not induce interleukin-1 beta and tumor necrosis factor-alpha production. J Lab Clin Med. 1993 Oct;122(4):374–381. [PubMed] [Google Scholar]
  2. Baldwin A. S., Jr The NF-kappa B and I kappa B proteins: new discoveries and insights. Annu Rev Immunol. 1996;14:649–683. doi: 10.1146/annurev.immunol.14.1.649. [DOI] [PubMed] [Google Scholar]
  3. Bell J. D., Buxton I. L., Brunton L. L. Enhancement of adenylate cyclase activity in S49 lymphoma cells by phorbol esters. Putative effect of C kinase on alpha s-GTP-catalytic subunit interaction. J Biol Chem. 1985 Mar 10;260(5):2625–2628. [PubMed] [Google Scholar]
  4. Berra E., Díaz-Meco M. T., Lozano J., Frutos S., Municio M. M., Sánchez P., Sanz L., Moscat J. Evidence for a role of MEK and MAPK during signal transduction by protein kinase C zeta. EMBO J. 1995 Dec 15;14(24):6157–6163. doi: 10.1002/j.1460-2075.1995.tb00306.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bogdan C., Ding A. Taxol, a microtubule-stabilizing antineoplastic agent, induces expression of tumor necrosis factor alpha and interleukin-1 in macrophages. J Leukoc Biol. 1992 Jul;52(1):119–121. doi: 10.1002/jlb.52.1.119. [DOI] [PubMed] [Google Scholar]
  6. Botteri F. M., Ballmer-Hofer K., Rajput B., Nagamine Y. Disruption of cytoskeletal structures results in the induction of the urokinase-type plasminogen activator gene expression. J Biol Chem. 1990 Aug 5;265(22):13327–13334. [PubMed] [Google Scholar]
  7. Burkhart C. A., Berman J. W., Swindell C. S., Horwitz S. B. Relationship between the structure of taxol and other taxanes on induction of tumor necrosis factor-alpha gene expression and cytotoxicity. Cancer Res. 1994 Nov 15;54(22):5779–5782. [PubMed] [Google Scholar]
  8. Chen C., Okayama H. High-efficiency transformation of mammalian cells by plasmid DNA. Mol Cell Biol. 1987 Aug;7(8):2745–2752. doi: 10.1128/mcb.7.8.2745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
  10. DeForge L. E., Remick D. G. Kinetics of TNF, IL-6, and IL-8 gene expression in LPS-stimulated human whole blood. Biochem Biophys Res Commun. 1991 Jan 15;174(1):18–24. doi: 10.1016/0006-291x(91)90478-p. [DOI] [PubMed] [Google Scholar]
  11. Deli E., Kiss Z., Kuo J. F. Cooperative interactions of protein kinase C and cAMP-dependent protein kinase systems in human promyelocytic leukemia HL60 cells. FEBS Lett. 1988 Apr 25;231(2):407–412. doi: 10.1016/0014-5793(88)80860-3. [DOI] [PubMed] [Google Scholar]
  12. Diaz-Meco M. T., Dominguez I., Sanz L., Dent P., Lozano J., Municio M. M., Berra E., Hay R. T., Sturgill T. W., Moscat J. zeta PKC induces phosphorylation and inactivation of I kappa B-alpha in vitro. EMBO J. 1994 Jun 15;13(12):2842–2848. doi: 10.1002/j.1460-2075.1994.tb06578.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Dignam J. D., Lebovitz R. M., Roeder R. G. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 1983 Mar 11;11(5):1475–1489. doi: 10.1093/nar/11.5.1475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ding A. H., Porteu F., Sanchez E., Nathan C. F. Shared actions of endotoxin and taxol on TNF receptors and TNF release. Science. 1990 Apr 20;248(4953):370–372. doi: 10.1126/science.1970196. [DOI] [PubMed] [Google Scholar]
  15. Ding A., Sanchez E., Nathan C. F. Taxol shares the ability of bacterial lipopolysaccharide to induce tyrosine phosphorylation of microtubule-associated protein kinase. J Immunol. 1993 Nov 15;151(10):5596–5602. [PubMed] [Google Scholar]
  16. Dominguez I., Sanz L., Arenzana-Seisdedos F., Diaz-Meco M. T., Virelizier J. L., Moscat J. Inhibition of protein kinase C zeta subspecies blocks the activation of an NF-kappa B-like activity in Xenopus laevis oocytes. Mol Cell Biol. 1993 Feb;13(2):1290–1295. doi: 10.1128/mcb.13.2.1290. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Dong Z., Birrer M. J., Watts R. G., Matrisian L. M., Colburn N. H. Blocking of tumor promoter-induced AP-1 activity inhibits induced transformation in JB6 mouse epidermal cells. Proc Natl Acad Sci U S A. 1994 Jan 18;91(2):609–613. doi: 10.1073/pnas.91.2.609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Dong Z., Lavrovsky V., Colburn N. H. Transformation reversion induced in JB6 RT101 cells by AP-1 inhibitors. Carcinogenesis. 1995 Apr;16(4):749–756. doi: 10.1093/carcin/16.4.749. [DOI] [PubMed] [Google Scholar]
  19. Ferrua B., Manie S., Doglio A., Shaw A., Sonthonnax S., Limouse M., Schaffar L. Stimulation of human interleukin 1 production and specific mRNA expression by microtubule-disrupting drugs. Cell Immunol. 1990 Dec;131(2):391–397. doi: 10.1016/0008-8749(90)90263-q. [DOI] [PubMed] [Google Scholar]
  20. Finco T. S., Baldwin A. S., Jr Kappa B site-dependent induction of gene expression by diverse inducers of nuclear factor kappa B requires Raf-1. J Biol Chem. 1993 Aug 25;268(24):17676–17679. [PubMed] [Google Scholar]
  21. Gutman M., Singh R. K., Xie K., Bucana C. D., Fidler I. J. Regulation of interleukin-8 expression in human melanoma cells by the organ environment. Cancer Res. 1995 Jun 1;55(11):2470–2475. [PubMed] [Google Scholar]
  22. Henricson B. E., Carboni J. M., Burkhardt A. L., Vogel S. N. LPS and Taxol activate Lyn kinase autophosphorylation in Lps(n), but not in Lpsd), macrophages. Mol Med. 1995 May;1(4):428–435. [PMC free article] [PubMed] [Google Scholar]
  23. Hirose K., Hakozaki M., Nyunoya Y., Kobayashi Y., Matsushita K., Takenouchi T., Mikata A., Mukaida N., Matsushima K. Chemokine gene transfection into tumour cells reduced tumorigenicity in nude mice in association with neutrophilic infiltration. Br J Cancer. 1995 Sep;72(3):708–714. doi: 10.1038/bjc.1995.398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Itoh-Lindstrom Y., Peterlin B. M., Ting J. P. Affinity enrichment and functional characterization of TRAX1, a novel transcription activator and X1-sequence-binding protein of HLA-DRA. Mol Cell Biol. 1995 Jan;15(1):282–289. doi: 10.1128/mcb.15.1.282. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Jun C. D., Choi B. M., Kim H. M., Chung H. T. Involvement of protein kinase C during taxol-induced activation of murine peritoneal macrophages. J Immunol. 1995 Jun 15;154(12):6541–6547. [PubMed] [Google Scholar]
  26. Kelleher D. J., Pessin J. E., Ruoho A. E., Johnson G. L. Phorbol ester induces desensitization of adenylate cyclase and phosphorylation of the beta-adrenergic receptor in turkey erythrocytes. Proc Natl Acad Sci U S A. 1984 Jul;81(14):4316–4320. doi: 10.1073/pnas.81.14.4316. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Kirikae T., Ojima I., Kirikae F., Ma Z., Kuduk S. D., Slater J. C., Takeuchi C. S., Bounaud P. Y., Nakano M. Structural requirements of taxoids for nitric oxide and tumor necrosis factor production by murine macrophages. Biochem Biophys Res Commun. 1996 Oct 3;227(1):227–235. doi: 10.1006/bbrc.1996.1494. [DOI] [PubMed] [Google Scholar]
  28. Kumar A., Haque J., Lacoste J., Hiscott J., Williams B. R. Double-stranded RNA-dependent protein kinase activates transcription factor NF-kappa B by phosphorylating I kappa B. Proc Natl Acad Sci U S A. 1994 Jul 5;91(14):6288–6292. doi: 10.1073/pnas.91.14.6288. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Kunkel S. L., Strieter R. M., Lindley I. J., Westwick J. Chemokines: new ligands, receptors and activities. Immunol Today. 1995 Dec;16(12):559–561. doi: 10.1016/0167-5699(95)80076-X. [DOI] [PubMed] [Google Scholar]
  30. Kunsch C., Rosen C. A. NF-kappa B subunit-specific regulation of the interleukin-8 promoter. Mol Cell Biol. 1993 Oct;13(10):6137–6146. doi: 10.1128/mcb.13.10.6137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Lee J. S., von der Ahe D., Kiefer B., Nagamine Y. Cytoskeletal reorganization and TPA differently modify AP-1 to induce the urokinase-type plasminogen activator gene in LLC-PK1 cells. Nucleic Acids Res. 1993 Jul 25;21(15):3365–3372. doi: 10.1093/nar/21.15.3365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Lee L. F., Schuerer-Maly C. C., Lofquist A. K., van Haaften-Day C., Ting J. P., White C. M., Martin B. K., Haskill J. S. Taxol-dependent transcriptional activation of IL-8 expression in a subset of human ovarian cancer. Cancer Res. 1996 Mar 15;56(6):1303–1308. [PubMed] [Google Scholar]
  33. Li S., Sedivy J. M. Raf-1 protein kinase activates the NF-kappa B transcription factor by dissociating the cytoplasmic NF-kappa B-I kappa B complex. Proc Natl Acad Sci U S A. 1993 Oct 15;90(20):9247–9251. doi: 10.1073/pnas.90.20.9247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Mahé Y., Mukaida N., Kuno K., Akiyama M., Ikeda N., Matsushima K., Murakami S. Hepatitis B virus X protein transactivates human interleukin-8 gene through acting on nuclear factor kB and CCAAT/enhancer-binding protein-like cis-elements. J Biol Chem. 1991 Jul 25;266(21):13759–13763. [PubMed] [Google Scholar]
  35. Manié S., Schmid-Alliana A., Kubar J., Ferrua B., Rossi B. Disruption of microtubule network in human monocytes induces expression of interleukin-1 but not that of interleukin-6 nor tumor necrosis factor-alpha. Involvement of protein kinase A stimulation. J Biol Chem. 1993 Jun 25;268(18):13675–13681. [PubMed] [Google Scholar]
  36. Manthey C. L., Brandes M. E., Perera P. Y., Vogel S. N. Taxol increases steady-state levels of lipopolysaccharide-inducible genes and protein-tyrosine phosphorylation in murine macrophages. J Immunol. 1992 Oct 1;149(7):2459–2465. [PubMed] [Google Scholar]
  37. Manthey C. L., Perera P. Y., Salkowski C. A., Vogel S. N. Taxol provides a second signal for murine macrophage tumoricidal activity. J Immunol. 1994 Jan 15;152(2):825–831. [PubMed] [Google Scholar]
  38. Manthey C. L., Qureshi N., Stütz P. L., Vogel S. N. Lipopolysaccharide antagonists block taxol-induced signaling in murine macrophages. J Exp Med. 1993 Aug 1;178(2):695–702. doi: 10.1084/jem.178.2.695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Masquilier D., Sassone-Corsi P. Transcriptional cross-talk: nuclear factors CREM and CREB bind to AP-1 sites and inhibit activation by Jun. J Biol Chem. 1992 Nov 5;267(31):22460–22466. [PubMed] [Google Scholar]
  40. Matsusaka T., Fujikawa K., Nishio Y., Mukaida N., Matsushima K., Kishimoto T., Akira S. Transcription factors NF-IL6 and NF-kappa B synergistically activate transcription of the inflammatory cytokines, interleukin 6 and interleukin 8. Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):10193–10197. doi: 10.1073/pnas.90.21.10193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Matsushima K., Larsen C. G., DuBois G. C., Oppenheim J. J. Purification and characterization of a novel monocyte chemotactic and activating factor produced by a human myelomonocytic cell line. J Exp Med. 1989 Apr 1;169(4):1485–1490. doi: 10.1084/jem.169.4.1485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Mukaida N., Mahe Y., Matsushima K. Cooperative interaction of nuclear factor-kappa B- and cis-regulatory enhancer binding protein-like factor binding elements in activating the interleukin-8 gene by pro-inflammatory cytokines. J Biol Chem. 1990 Dec 5;265(34):21128–21133. [PubMed] [Google Scholar]
  43. Nakamura H., Yoshimura K., Jaffe H. A., Crystal R. G. Interleukin-8 gene expression in human bronchial epithelial cells. J Biol Chem. 1991 Oct 15;266(29):19611–19617. [PubMed] [Google Scholar]
  44. Okamoto S., Mukaida N., Yasumoto K., Rice N., Ishikawa Y., Horiguchi H., Murakami S., Matsushima K. The interleukin-8 AP-1 and kappa B-like sites are genetic end targets of FK506-sensitive pathway accompanied by calcium mobilization. J Biol Chem. 1994 Mar 18;269(11):8582–8589. [PubMed] [Google Scholar]
  45. Oliveira I. C., Mukaida N., Matsushima K., Vilcek J. Transcriptional inhibition of the interleukin-8 gene by interferon is mediated by the NF-kappa B site. Mol Cell Biol. 1994 Aug;14(8):5300–5308. doi: 10.1128/mcb.14.8.5300. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Oppenheim J. J., Zachariae C. O., Mukaida N., Matsushima K. Properties of the novel proinflammatory supergene "intercrine" cytokine family. Annu Rev Immunol. 1991;9:617–648. doi: 10.1146/annurev.iy.09.040191.003153. [DOI] [PubMed] [Google Scholar]
  47. Perera P. Y., Qureshi N., Vogel S. N. Paclitaxel (Taxol)-induced NF-kappaB translocation in murine macrophages. Infect Immun. 1996 Mar;64(3):878–884. doi: 10.1128/iai.64.3.878-884.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Ramakrishnan S., Xu F. J., Brandt S. J., Niedel J. E., Bast R. C., Jr, Brown E. L. Constitutive production of macrophage colony-stimulating factor by human ovarian and breast cancer cell lines. J Clin Invest. 1989 Mar;83(3):921–926. doi: 10.1172/JCI113977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Singh R. K., Gutman M., Radinsky R., Bucana C. D., Fidler I. J. Expression of interleukin 8 correlates with the metastatic potential of human melanoma cells in nude mice. Cancer Res. 1994 Jun 15;54(12):3242–3247. [PubMed] [Google Scholar]
  50. Sporn S. A., Eierman D. F., Johnson C. E., Morris J., Martin G., Ladner M., Haskill S. Monocyte adherence results in selective induction of novel genes sharing homology with mediators of inflammation and tissue repair. J Immunol. 1990 Jun 1;144(11):4434–4441. [PubMed] [Google Scholar]
  51. Stein B., Baldwin A. S., Jr Distinct mechanisms for regulation of the interleukin-8 gene involve synergism and cooperativity between C/EBP and NF-kappa B. Mol Cell Biol. 1993 Nov;13(11):7191–7198. doi: 10.1128/mcb.13.11.7191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Wright K. L., Moore T. L., Vilen B. J., Brown A. M., Ting J. P. Major histocompatibility complex class II-associated invariant chain gene expression is up-regulated by cooperative interactions of Sp1 and NF-Y. J Biol Chem. 1995 Sep 8;270(36):20978–20986. doi: 10.1074/jbc.270.36.20978. [DOI] [PubMed] [Google Scholar]
  53. Yasumoto K., Okamoto S., Mukaida N., Murakami S., Mai M., Matsushima K. Tumor necrosis factor alpha and interferon gamma synergistically induce interleukin 8 production in a human gastric cancer cell line through acting concurrently on AP-1 and NF-kB-like binding sites of the interleukin 8 gene. J Biol Chem. 1992 Nov 5;267(31):22506–22511. [PubMed] [Google Scholar]
  54. Yoshimasa T., Sibley D. R., Bouvier M., Lefkowitz R. J., Caron M. G. Cross-talk between cellular signalling pathways suggested by phorbol-ester-induced adenylate cyclase phosphorylation. Nature. 1987 May 7;327(6117):67–70. doi: 10.1038/327067a0. [DOI] [PubMed] [Google Scholar]
  55. Zachariae C. O., Kaltoft K., Thestrup-Pedersen K. Human T lymphocytes and T-cell lines as target cells for lymphocyte chemotaxis. Arch Dermatol Res. 1992;284(2):77–81. doi: 10.1007/BF00373373. [DOI] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES