Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1997 Sep;17(9):5255–5268. doi: 10.1128/mcb.17.9.5255

Control of the translational efficiency of beta-F1-ATPase mRNA depends on the regulation of a protein that binds the 3' untranslated region of the mRNA.

J M Izquierdo 1, J M Cuezva 1
PMCID: PMC232376  PMID: 9271403

Abstract

The expression of the nucleus-encoded beta-F1-ATPase gene of oxidative phosphorylation is developmentally regulated in the liver at both the transcriptional and posttranscriptional levels. In this study we have analyzed the potential mechanisms that control the cytoplasmic expression of beta-F1-ATPase mRNA during liver development. Remarkably, a full-length 3' untranslated region (UTR) of the transcript is required for its efficient in vitro translation. When the 3' UTR of beta-F1-ATPase mRNA is placed downstream of a reporter construct, it functions as a translational enhancer. In vitro translation experiments with full-length beta-F1-ATPase mRNA and with a chimeric reporter construct containing the 3' UTR of beta-F1-ATPase mRNA suggested the existence of an inhibitor of beta-F1-ATPase mRNA translation in the fetal liver. Electrophoretic mobility shift assays and UV cross-linking experiments allowed the identification of an acutely regulated protein (3'betaFBP) of the liver that binds at the 3' UTR of beta-F1-ATPase mRNA. The developmental profile of 3'betaFBP parallels the reported changes in the translational efficiency of beta-F1-ATPase mRNA during development. Fractionation of fetal liver extracts revealed that the inhibitory activity of beta-F1-ATPase mRNA translation cofractionates with 3'-UTR band-shifting activity. Compared to other tissues of the adult rat, kidney and spleen extracts showed very high expression levels of 3'betaFBP. Translation of beta-F1-ATPase mRNA in the presence of kidney and spleen extracts further supported a translational inhibitory role for 3'betaFBP. Mapping experiments and a deletion mutant of the 3' UTR revealed that the cis-acting element for binding 3'betaFBP is located within a highly conserved region of the 3' UTR of mammalian beta-F1-ATPase mRNAs. Overall, we have identified a mechanism of translational control that regulates the rapid postnatal differentiation of liver mitochondria.

Full Text

The Full Text of this article is available as a PDF (2.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Attardi G., Schatz G. Biogenesis of mitochondria. Annu Rev Cell Biol. 1988;4:289–333. doi: 10.1146/annurev.cb.04.110188.001445. [DOI] [PubMed] [Google Scholar]
  2. Bachvarova R. F. A maternal tail of poly(A): the long and the short of it. Cell. 1992 Jun 12;69(6):895–897. doi: 10.1016/0092-8674(92)90606-d. [DOI] [PubMed] [Google Scholar]
  3. Baker C., Holland D., Edge M., Colman A. Effects of oligo sequence and chemistry on the efficiency of oligodeoxyribonucleotide-mediated mRNA cleavage. Nucleic Acids Res. 1990 Jun 25;18(12):3537–3543. doi: 10.1093/nar/18.12.3537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ballantine J. E., Woodland H. R. Polyadenylation of histone mRNA in Xenopus oocytes and embryos. FEBS Lett. 1985 Jan 28;180(2):224–228. doi: 10.1016/0014-5793(85)81075-9. [DOI] [PubMed] [Google Scholar]
  5. Beck S. C., De Maio A. Stabilization of protein synthesis in thermotolerant cells during heat shock. Association of heat shock protein-72 with ribosomal subunits of polysomes. J Biol Chem. 1994 Aug 26;269(34):21803–21811. [PubMed] [Google Scholar]
  6. Boorstein W. R., Craig E. A. Primer extension analysis of RNA. Methods Enzymol. 1989;180:347–369. doi: 10.1016/0076-6879(89)80111-9. [DOI] [PubMed] [Google Scholar]
  7. Boulet D., Poirier J., Côté C. Studies on the biogenesis of the mammalian ATP synthase complex: isolation and characterization of a full-length cDNA encoding the rat F1-beta-subunit. Biochem Biophys Res Commun. 1989 Mar 31;159(3):1184–1190. doi: 10.1016/0006-291x(89)92235-3. [DOI] [PubMed] [Google Scholar]
  8. Bouvet P., Wolffe A. P. A role for transcription and FRGY2 in masking maternal mRNA within Xenopus oocytes. Cell. 1994 Jun 17;77(6):931–941. doi: 10.1016/0092-8674(94)90141-4. [DOI] [PubMed] [Google Scholar]
  9. Breen G. A., Holmans P. L., Garnett K. E. Isolation and characterization of a complementary DNA for the nuclear-coded precursor of the beta-subunit of bovine mitochondrial F1-ATPase. Biochemistry. 1988 May 31;27(11):3955–3961. doi: 10.1021/bi00411a010. [DOI] [PubMed] [Google Scholar]
  10. Cantatore P., Polosa P. L., Fracasso F., Flagella Z., Gadaleta M. N. Quantitation of mitochondrial RNA species during rat liver development: the concentration of cytochrome oxidase subunit I (CoI) mRNA increases at birth. Cell Differ. 1986 Sep;19(2):125–132. doi: 10.1016/0045-6039(86)90069-2. [DOI] [PubMed] [Google Scholar]
  11. Chen C. Y., Shyu A. B. AU-rich elements: characterization and importance in mRNA degradation. Trends Biochem Sci. 1995 Nov;20(11):465–470. doi: 10.1016/s0968-0004(00)89102-1. [DOI] [PubMed] [Google Scholar]
  12. Curtis D., Lehmann R., Zamore P. D. Translational regulation in development. Cell. 1995 Apr 21;81(2):171–178. doi: 10.1016/0092-8674(95)90325-9. [DOI] [PubMed] [Google Scholar]
  13. Danon A., Mayfield S. P. ADP-dependent phosphorylation regulates RNA-binding in vitro: implications in light-modulated translation. EMBO J. 1994 May 1;13(9):2227–2235. doi: 10.1002/j.1460-2075.1994.tb06500.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Danthinne X., Seurinck J., Meulewaeter F., Van Montagu M., Cornelissen M. The 3' untranslated region of satellite tobacco necrosis virus RNA stimulates translation in vitro. Mol Cell Biol. 1993 Jun;13(6):3340–3349. doi: 10.1128/mcb.13.6.3340. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Decker C. J., Parker R. Diversity of cytoplasmic functions for the 3' untranslated region of eukaryotic transcripts. Curr Opin Cell Biol. 1995 Jun;7(3):386–392. doi: 10.1016/0955-0674(95)80094-8. [DOI] [PubMed] [Google Scholar]
  16. Dehlin E., von Gabain A., Alm G., Dingelmaier R., Resnekov O. Repression of beta interferon gene expression in virus-infected cells is correlated with a poly(A) tail elongation. Mol Cell Biol. 1996 Feb;16(2):468–474. doi: 10.1128/mcb.16.2.468. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Egea G., Izquierdo J. M., Ricart J., San Martín C., Cuezva J. M. mRNA encoding the beta-subunit of the mitochondrial F1-ATPase complex is a localized mRNA in rat hepatocytes. Biochem J. 1997 Mar 1;322(Pt 2):557–565. doi: 10.1042/bj3220557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Gallie D. R., Tanguay R. Poly(A) binds to initiation factors and increases cap-dependent translation in vitro. J Biol Chem. 1994 Jun 24;269(25):17166–17173. [PubMed] [Google Scholar]
  20. Gallie D. R. The cap and poly(A) tail function synergistically to regulate mRNA translational efficiency. Genes Dev. 1991 Nov;5(11):2108–2116. doi: 10.1101/gad.5.11.2108. [DOI] [PubMed] [Google Scholar]
  21. Garboczi D. N., Fox A. H., Gerring S. L., Pedersen P. L. Beta subunit of rat liver mitochondrial ATP synthase: cDNA cloning, amino acid sequence, expression in Escherichia coli, and structural relationship to adenylate kinase. Biochemistry. 1988 Jan 26;27(2):553–560. doi: 10.1021/bi00402a008. [DOI] [PubMed] [Google Scholar]
  22. Hann L. E., Webb A. C., Cai J. M., Gehrke L. Identification of a competitive translation determinant in the 3' untranslated region of alfalfa mosaic virus coat protein mRNA. Mol Cell Biol. 1997 Apr;17(4):2005–2013. doi: 10.1128/mcb.17.4.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Hentze M. W., Caughman S. W., Rouault T. A., Barriocanal J. G., Dancis A., Harford J. B., Klausner R. D. Identification of the iron-responsive element for the translational regulation of human ferritin mRNA. Science. 1987 Dec 11;238(4833):1570–1573. doi: 10.1126/science.3685996. [DOI] [PubMed] [Google Scholar]
  24. Hentze M. W. Translational regulation: versatile mechanisms for metabolic and developmental control. Curr Opin Cell Biol. 1995 Jun;7(3):393–398. doi: 10.1016/0955-0674(95)80095-6. [DOI] [PubMed] [Google Scholar]
  25. Huarte J., Belin D., Vassalli A., Strickland S., Vassalli J. D. Meiotic maturation of mouse oocytes triggers the translation and polyadenylation of dormant tissue-type plasminogen activator mRNA. Genes Dev. 1987 Dec;1(10):1201–1211. doi: 10.1101/gad.1.10.1201. [DOI] [PubMed] [Google Scholar]
  26. Izquierdo J. M., Cuezva J. M. Evidence of post-transcriptional regulation in mammalian mitochondrial biogenesis. Biochem Biophys Res Commun. 1993 Oct 15;196(1):55–60. doi: 10.1006/bbrc.1993.2215. [DOI] [PubMed] [Google Scholar]
  27. Izquierdo J. M., Luis A. M., Cuezva J. M. Postnatal mitochondrial differentiation in rat liver. Regulation by thyroid hormones of the beta-subunit of the mitochondrial F1-ATPase complex. J Biol Chem. 1990 Jun 5;265(16):9090–9097. [PubMed] [Google Scholar]
  28. Izquierdo J. M., Ricart J., Ostronoff L. K., Egea G., Cuezva J. M. Changing patterns of transcriptional and post-transcriptional control of beta-F1-ATPase gene expression during mitochondrial biogenesis in liver. J Biol Chem. 1995 Apr 28;270(17):10342–10350. doi: 10.1074/jbc.270.17.10342. [DOI] [PubMed] [Google Scholar]
  29. Jackson R. J., Standart N. Do the poly(A) tail and 3' untranslated region control mRNA translation? Cell. 1990 Jul 13;62(1):15–24. doi: 10.1016/0092-8674(90)90235-7. [DOI] [PubMed] [Google Scholar]
  30. Juretić N., Theus M. Analysis of the polyadenylation consensus sequence context in the genes of nuclear encoded mitochondrial proteins. FEBS Lett. 1991 Sep 23;290(1-2):4–8. doi: 10.1016/0014-5793(91)81212-q. [DOI] [PubMed] [Google Scholar]
  31. Kleene K. C., Flynn J. Translation of mouse testis poly(A)+ mRNAs for testis-specific protein, protamine 1, and the precursor for protamine 2. Dev Biol. 1987 Sep;123(1):125–135. doi: 10.1016/0012-1606(87)90434-9. [DOI] [PubMed] [Google Scholar]
  32. Kleene K. C. Poly(A) shortening accompanies the activation of translation of five mRNAs during spermiogenesis in the mouse. Development. 1989 Jun;106(2):367–373. doi: 10.1242/dev.106.2.367. [DOI] [PubMed] [Google Scholar]
  33. Kwon Y. K., Hecht N. B. Binding of a phosphoprotein to the 3' untranslated region of the mouse protamine 2 mRNA temporally represses its translation. Mol Cell Biol. 1993 Oct;13(10):6547–6557. doi: 10.1128/mcb.13.10.6547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Lee R. C., Feinbaum R. L., Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993 Dec 3;75(5):843–854. doi: 10.1016/0092-8674(93)90529-y. [DOI] [PubMed] [Google Scholar]
  35. Lithgow T., Cuezva J. M., Silver P. A. Highways for protein delivery to the mitochondria. Trends Biochem Sci. 1997 Apr;22(4):110–113. doi: 10.1016/s0968-0004(97)01007-4. [DOI] [PubMed] [Google Scholar]
  36. Luis A. M., Izquierdo J. M., Ostronoff L. K., Salinas M., Santarén J. F., Cuezva J. M. Translational regulation of mitochondrial differentiation in neonatal rat liver. Specific increase in the translational efficiency of the nuclear-encoded mitochondrial beta-F1-ATPase mRNA. J Biol Chem. 1993 Jan 25;268(3):1868–1875. [PubMed] [Google Scholar]
  37. Lévy M., Toury R. Etude de la biogénèse des enzymes mitochondriaux de l'hépatocyte au cours du développment du rat. Bull Soc Chim Biol (Paris) 1970 Jun;52(5):578–580. [PubMed] [Google Scholar]
  38. Matsumoto K., Meric F., Wolffe A. P. Translational repression dependent on the interaction of the Xenopus Y-box protein FRGY2 with mRNA. Role of the cold shock domain, tail domain, and selective RNA sequence recognition. J Biol Chem. 1996 Sep 13;271(37):22706–22712. doi: 10.1074/jbc.271.37.22706. [DOI] [PubMed] [Google Scholar]
  39. McCarthy J. E., Kollmus H. Cytoplasmic mRNA-protein interactions in eukaryotic gene expression. Trends Biochem Sci. 1995 May;20(5):191–197. doi: 10.1016/s0968-0004(00)89006-4. [DOI] [PubMed] [Google Scholar]
  40. Meric F., Searfoss A. M., Wormington M., Wolffe A. P. Masking and unmasking maternal mRNA. The role of polyadenylation, transcription, splicing, and nuclear history. J Biol Chem. 1996 Nov 29;271(48):30804–30810. doi: 10.1074/jbc.271.48.30804. [DOI] [PubMed] [Google Scholar]
  41. Muschel R., Khoury G., Reid L. M. Regulation of insulin mRNA abundance and adenylation: dependence on hormones and matrix substrata. Mol Cell Biol. 1986 Jan;6(1):337–341. doi: 10.1128/mcb.6.1.337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Neckelmann N., Warner C. K., Chung A., Kudoh J., Minoshima S., Fukuyama R., Maekawa M., Shimizu Y., Shimizu N., Liu J. D. The human ATP synthase beta subunit gene: sequence analysis, chromosome assignment, and differential expression. Genomics. 1989 Nov;5(4):829–843. doi: 10.1016/0888-7543(89)90125-0. [DOI] [PubMed] [Google Scholar]
  43. Ohta S., Tomura H., Matsuda K., Kagawa Y. Gene structure of the human mitochondrial adenosine triphosphate synthase beta subunit. J Biol Chem. 1988 Aug 15;263(23):11257–11262. [PubMed] [Google Scholar]
  44. Ostareck-Lederer A., Ostareck D. H., Standart N., Thiele B. J. Translation of 15-lipoxygenase mRNA is inhibited by a protein that binds to a repeated sequence in the 3' untranslated region. EMBO J. 1994 Mar 15;13(6):1476–1481. doi: 10.1002/j.1460-2075.1994.tb06402.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Ostronoff L. K., Izquierdo J. M., Cuezva J. M. mt-mRNA stability regulates the expression of the mitochondrial genome during liver development. Biochem Biophys Res Commun. 1995 Dec 26;217(3):1094–1098. doi: 10.1006/bbrc.1995.2881. [DOI] [PubMed] [Google Scholar]
  46. Ostronoff L. K., Izquierdo J. M., Enríquez J. A., Montoya J., Cuezva J. M. Transient activation of mitochondrial translation regulates the expression of the mitochondrial genome during mammalian mitochondrial differentiation. Biochem J. 1996 May 15;316(Pt 1):183–191. doi: 10.1042/bj3160183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Paek I., Axel R. Glucocorticoids enhance stability of human growth hormone mRNA. Mol Cell Biol. 1987 Apr;7(4):1496–1507. doi: 10.1128/mcb.7.4.1496. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Pain V. M. Initiation of protein synthesis in eukaryotic cells. Eur J Biochem. 1996 Mar 15;236(3):747–771. doi: 10.1111/j.1432-1033.1996.00747.x. [DOI] [PubMed] [Google Scholar]
  49. Pollak J. K. The maturation of the inner membrane of foetal rat liver mitochondria. Biochem J. 1975 Sep;150(3):477–488. doi: 10.1042/bj1500477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Rastinejad F., Blau H. M. Genetic complementation reveals a novel regulatory role for 3' untranslated regions in growth and differentiation. Cell. 1993 Mar 26;72(6):903–917. doi: 10.1016/0092-8674(93)90579-f. [DOI] [PubMed] [Google Scholar]
  51. Rastinejad F., Conboy M. J., Rando T. A., Blau H. M. Tumor suppression by RNA from the 3' untranslated region of alpha-tropomyosin. Cell. 1993 Dec 17;75(6):1107–1117. doi: 10.1016/0092-8674(93)90320-p. [DOI] [PubMed] [Google Scholar]
  52. Ricart J., Egea G., Izquierdo J. M., San Martín C., Cuezva J. M. Subcellular structure containing mRNA for beta subunit of mitochondrial H+-ATP synthase in rat hepatocytes is translationally active. Biochem J. 1997 Jun 1;324(Pt 2):635–643. doi: 10.1042/bj3240635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Richter J. D. Translational control during early development. Bioessays. 1991 Apr;13(4):179–183. doi: 10.1002/bies.950130406. [DOI] [PubMed] [Google Scholar]
  54. Robbie E. P., Peterson M., Amaya E., Musci T. J. Temporal regulation of the Xenopus FGF receptor in development: a translation inhibitory element in the 3' untranslated region. Development. 1995 Jun;121(6):1775–1785. doi: 10.1242/dev.121.6.1775. [DOI] [PubMed] [Google Scholar]
  55. Robinson B. G., Frim D. M., Schwartz W. J., Majzoub J. A. Vasopressin mRNA in the suprachiasmatic nuclei: daily regulation of polyadenylate tail length. Science. 1988 Jul 15;241(4863):342–344. doi: 10.1126/science.3388044. [DOI] [PubMed] [Google Scholar]
  56. Rohr H. P., Wirz A., Henning L. C., Riede U. N., Bianchi L. Morphometric analysis of the rat liver cell in the perinatal period. Lab Invest. 1971 Feb;24(2):128–139. [PubMed] [Google Scholar]
  57. Ross J. Control of messenger RNA stability in higher eukaryotes. Trends Genet. 1996 May;12(5):171–175. doi: 10.1016/0168-9525(96)10016-0. [DOI] [PubMed] [Google Scholar]
  58. Rouault T. A., Stout C. D., Kaptain S., Harford J. B., Klausner R. D. Structural relationship between an iron-regulated RNA-binding protein (IRE-BP) and aconitase: functional implications. Cell. 1991 Mar 8;64(5):881–883. doi: 10.1016/0092-8674(91)90312-m. [DOI] [PubMed] [Google Scholar]
  59. Sachs A., Wahle E. Poly(A) tail metabolism and function in eucaryotes. J Biol Chem. 1993 Nov 5;268(31):22955–22958. [PubMed] [Google Scholar]
  60. Santarén J. F., Alconada A., Cuezva J. M. Examination of processing of the rat liver mitochondrial F1-ATPase beta subunit precursor protein by high-resolution 2D-gel electrophoresis. J Biochem. 1993 Feb;113(2):129–131. doi: 10.1093/oxfordjournals.jbchem.a124014. [DOI] [PubMed] [Google Scholar]
  61. Sarkar S. Translational control involving a novel cytoplasmic RNA and ribonucleoprotein. Prog Nucleic Acid Res Mol Biol. 1984;31:267–293. doi: 10.1016/s0079-6603(08)60380-3. [DOI] [PubMed] [Google Scholar]
  62. Strickland S., Huarte J., Belin D., Vassalli A., Rickles R. J., Vassalli J. D. Antisense RNA directed against the 3' noncoding region prevents dormant mRNA activation in mouse oocytes. Science. 1988 Aug 5;241(4866):680–684. doi: 10.1126/science.2456615. [DOI] [PubMed] [Google Scholar]
  63. Tanguay R. L., Gallie D. R. Translational efficiency is regulated by the length of the 3' untranslated region. Mol Cell Biol. 1996 Jan;16(1):146–156. doi: 10.1128/mcb.16.1.146. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Tarun S. Z., Jr, Sachs A. B. A common function for mRNA 5' and 3' ends in translation initiation in yeast. Genes Dev. 1995 Dec 1;9(23):2997–3007. doi: 10.1101/gad.9.23.2997. [DOI] [PubMed] [Google Scholar]
  65. Tarun S. Z., Jr, Sachs A. B. Association of the yeast poly(A) tail binding protein with translation initiation factor eIF-4G. EMBO J. 1996 Dec 16;15(24):7168–7177. [PMC free article] [PubMed] [Google Scholar]
  66. Valcarce C., Navarrete R. M., Encabo P., Loeches E., Satrústegui J., Cuezva J. M. Postnatal development of rat liver mitochondrial functions. The roles of protein synthesis and of adenine nucleotides. J Biol Chem. 1988 Jun 5;263(16):7767–7775. [PubMed] [Google Scholar]
  67. Vanderburg C. R., Nathanson M. A. Posttranscriptional control of embryonic rat skeletal muscle protein synthesis. Control at the level of translation by endogenous RNA. J Cell Biol. 1988 Sep;107(3):1085–1098. doi: 10.1083/jcb.107.3.1085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Wickens M. In the beginning is the end: regulation of poly(A) addition and removal during early development. Trends Biochem Sci. 1990 Aug;15(8):320–324. doi: 10.1016/0968-0004(90)90022-4. [DOI] [PubMed] [Google Scholar]
  69. Wightman B., Ha I., Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell. 1993 Dec 3;75(5):855–862. doi: 10.1016/0092-8674(93)90530-4. [DOI] [PubMed] [Google Scholar]
  70. Wormington M. Poly(A) and translation: development control. Curr Opin Cell Biol. 1993 Dec;5(6):950–954. doi: 10.1016/0955-0674(93)90075-2. [DOI] [PubMed] [Google Scholar]
  71. Yiu G. K., Gu W., Hecht N. B. Heterogeneity in the 5' untranslated region of mouse cytochrome cT mRNAs leads to altered translational status of the mRNAs. Nucleic Acids Res. 1994 Nov 11;22(22):4599–4606. doi: 10.1093/nar/22.22.4599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Zaidi S. H., Malter J. S. Amyloid precursor protein mRNA stability is controlled by a 29-base element in the 3'-untranslated region. J Biol Chem. 1994 Sep 30;269(39):24007–24013. [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES