Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1997 Oct;17(10):5667–5678. doi: 10.1128/mcb.17.10.5667

Net-b, a Ras-insensitive factor that forms ternary complexes with serum response factor on the serum response element of the fos promoter.

A Giovane 1, P Sobieszczuk 1, A Ayadi 1, S M Maira 1, B Wasylyk 1
PMCID: PMC232415  PMID: 9315625

Abstract

The Ras signalling pathway targets transcription factors such as the ternary complex factors that are recruited by the serum response factor to form complexes on the serum response element (SRE) of the fos promoter. We have identified a new ternary complex factor, Net-b. We report the features of the net gene and show that it produces several splice variants, net-b and net-c. net-b RNA and protein are expressed in a variety of tissues and cell lines. net-c RNA is expressed at low levels, and the protein was not detected, raising the possibility that it is a cryptic splice variant. We have studied the composition of ternary complexes that form on the SRE of the fos promoter with extracts from fibroblasts (NIH 3T3) cultured under various conditions and pre-B cells (70Z/3) before and after differentiation with lipopolysaccharide (LPS). The fibroblast complexes contain mainly Net-b followed by Sap1 and Elk1. Net-b complexes, as well as Sap1 and Elk1, are induced by epidermal growth factor (EGF) stimulation of cells cultured in low serum. Pre-B-cell complexes contain mainly Sap1, with less of Net-b and little of Elk1. There is little change upon LPS-induced differentiation compared to the increase with EGF in fibroblasts. We have also found that Net-b is a nuclear protein that constitutively represses transcription. Net-b is not activated by Ras signalling, in contrast to Net, Sap1a, and Elk1. We have previously reported that down-regulation of Net proteins with antisense RNA increases SRE activity. The increase in SRE activity is observed at low serum levels and is even greater after serum stimulation, showing that the SRE is under negative regulation by Net proteins and the level of repression increases during induction. Net-b, the predominant factor in ternary complexes in fibroblasts, may both keep the activity of the SRE low in the absence of strong inducing conditions and rapidly shut the activity off after stimulation.

Full Text

The Full Text of this article is available as a PDF (3.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beitel G. J., Tuck S., Greenwald I., Horvitz H. R. The Caenorhabditis elegans gene lin-1 encodes an ETS-domain protein and defines a branch of the vulval induction pathway. Genes Dev. 1995 Dec 15;9(24):3149–3162. doi: 10.1101/gad.9.24.3149. [DOI] [PubMed] [Google Scholar]
  2. Bradford A. P., Conrad K. E., Wasylyk C., Wasylyk B., Gutierrez-Hartmann A. Functional interaction of c-Ets-1 and GHF-1/Pit-1 mediates Ras activation of pituitary-specific gene expression: mapping of the essential c-Ets-1 domain. Mol Cell Biol. 1995 May;15(5):2849–2857. doi: 10.1128/mcb.15.5.2849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brunner D., Dücker K., Oellers N., Hafen E., Scholz H., Klämbt C. The ETS domain protein pointed-P2 is a target of MAP kinase in the sevenless signal transduction pathway. Nature. 1994 Aug 4;370(6488):386–389. doi: 10.1038/370386a0. [DOI] [PubMed] [Google Scholar]
  4. Coffer P., de Jonge M., Mettouchi A., Binetruy B., Ghysdael J., Kruijer W. junB promoter regulation: Ras mediated transactivation by c-Ets-1 and c-Ets-2. Oncogene. 1994 Mar;9(3):911–921. [PubMed] [Google Scholar]
  5. Croissant J. D., Kim J. H., Eichele G., Goering L., Lough J., Prywes R., Schwartz R. J. Avian serum response factor expression restricted primarily to muscle cell lineages is required for alpha-actin gene transcription. Dev Biol. 1996 Jul 10;177(1):250–264. doi: 10.1006/dbio.1996.0160. [DOI] [PubMed] [Google Scholar]
  6. Downward J. KSR: a novel player in the RAS pathway. Cell. 1995 Dec 15;83(6):831–834. doi: 10.1016/0092-8674(95)90198-1. [DOI] [PubMed] [Google Scholar]
  7. Galang C. K., Der C. J., Hauser C. A. Oncogenic Ras can induce transcriptional activation through a variety of promoter elements, including tandem c-Ets-2 binding sites. Oncogene. 1994 Oct;9(10):2913–2921. [PubMed] [Google Scholar]
  8. Gille H., Kortenjann M., Thomae O., Moomaw C., Slaughter C., Cobb M. H., Shaw P. E. ERK phosphorylation potentiates Elk-1-mediated ternary complex formation and transactivation. EMBO J. 1995 Mar 1;14(5):951–962. doi: 10.1002/j.1460-2075.1995.tb07076.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gille H., Sharrocks A. D., Shaw P. E. Phosphorylation of transcription factor p62TCF by MAP kinase stimulates ternary complex formation at c-fos promoter. Nature. 1992 Jul 30;358(6385):414–417. doi: 10.1038/358414a0. [DOI] [PubMed] [Google Scholar]
  10. Giovane A., Pintzas A., Maira S. M., Sobieszczuk P., Wasylyk B. Net, a new ets transcription factor that is activated by Ras. Genes Dev. 1994 Jul 1;8(13):1502–1513. doi: 10.1101/gad.8.13.1502. [DOI] [PubMed] [Google Scholar]
  11. Giovane A., Sobieszczuk P., Mignon C., Mattei M. G., Wasylyk B. Locations of the ets subfamily members net, elk1, and sap1 (ELK3, ELK1, and ELK4) on three homologous regions of the mouse and human genomes. Genomics. 1995 Oct 10;29(3):769–772. doi: 10.1006/geno.1995.9938. [DOI] [PubMed] [Google Scholar]
  12. Greenberg M. E., Ziff E. B. Stimulation of 3T3 cells induces transcription of the c-fos proto-oncogene. Nature. 1984 Oct 4;311(5985):433–438. doi: 10.1038/311433a0. [DOI] [PubMed] [Google Scholar]
  13. Grévin D., Ung S., Denhez F., Dehem M., Quatannens B., Bègue A., Stéhelin D., Martin P. Structure and organization of the mouse elk1 gene. Gene. 1996 Sep 26;174(1):185–188. doi: 10.1016/0378-1119(96)00357-5. [DOI] [PubMed] [Google Scholar]
  14. Guillemin K., Groppe J., Ducker K., Treisman R., Hafen E., Affolter M., Krasnow M. A. The pruned gene encodes the Drosophila serum response factor and regulates cytoplasmic outgrowth during terminal branching of the tracheal system. Development. 1996 May;122(5):1353–1362. doi: 10.1242/dev.122.5.1353. [DOI] [PubMed] [Google Scholar]
  15. Gum R., Lengyel E., Juarez J., Chen J. H., Sato H., Seiki M., Boyd D. Stimulation of 92-kDa gelatinase B promoter activity by ras is mitogen-activated protein kinase kinase 1-independent and requires multiple transcription factor binding sites including closely spaced PEA3/ets and AP-1 sequences. J Biol Chem. 1996 May 3;271(18):10672–10680. doi: 10.1074/jbc.271.18.10672. [DOI] [PubMed] [Google Scholar]
  16. Han J., Lee J. D., Bibbs L., Ulevitch R. J. A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science. 1994 Aug 5;265(5173):808–811. doi: 10.1126/science.7914033. [DOI] [PubMed] [Google Scholar]
  17. Han J., Lee J. D., Tobias P. S., Ulevitch R. J. Endotoxin induces rapid protein tyrosine phosphorylation in 70Z/3 cells expressing CD14. J Biol Chem. 1993 Nov 25;268(33):25009–25014. [PubMed] [Google Scholar]
  18. Herrera R. E., Shaw P. E., Nordheim A. Occupation of the c-fos serum response element in vivo by a multi-protein complex is unaltered by growth factor induction. Nature. 1989 Jul 6;340(6228):68–70. doi: 10.1038/340068a0. [DOI] [PubMed] [Google Scholar]
  19. Hill C. S., Wynne J., Treisman R. Serum-regulated transcription by serum response factor (SRF): a novel role for the DNA binding domain. EMBO J. 1994 Nov 15;13(22):5421–5432. doi: 10.1002/j.1460-2075.1994.tb06877.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hill C. S., Wynne J., Treisman R. The Rho family GTPases RhoA, Rac1, and CDC42Hs regulate transcriptional activation by SRF. Cell. 1995 Jun 30;81(7):1159–1170. doi: 10.1016/s0092-8674(05)80020-0. [DOI] [PubMed] [Google Scholar]
  21. Hipskind R. A., Baccarini M., Nordheim A. Transient activation of RAF-1, MEK, and ERK2 coincides kinetically with ternary complex factor phosphorylation and immediate-early gene promoter activity in vivo. Mol Cell Biol. 1994 Sep;14(9):6219–6231. doi: 10.1128/mcb.14.9.6219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Hipskind R. A., Büscher D., Nordheim A., Baccarini M. Ras/MAP kinase-dependent and -independent signaling pathways target distinct ternary complex factors. Genes Dev. 1994 Aug 1;8(15):1803–1816. doi: 10.1101/gad.8.15.1803. [DOI] [PubMed] [Google Scholar]
  23. Hipskind R. A., Rao V. N., Mueller C. G., Reddy E. S., Nordheim A. Ets-related protein Elk-1 is homologous to the c-fos regulatory factor p62TCF. Nature. 1991 Dec 19;354(6354):531–534. doi: 10.1038/354531a0. [DOI] [PubMed] [Google Scholar]
  24. Janknecht R., Cahill M. A., Nordheim A. Signal integration at the c-fos promoter. Carcinogenesis. 1995 Mar;16(3):443–450. doi: 10.1093/carcin/16.3.443. [DOI] [PubMed] [Google Scholar]
  25. Janknecht R., Ernst W. H., Nordheim A. SAP1a is a nuclear target of signaling cascades involving ERKs. Oncogene. 1995 Mar 16;10(6):1209–1216. [PubMed] [Google Scholar]
  26. Janknecht R., Monté D., Baert J. L., de Launoit Y. The ETS-related transcription factor ERM is a nuclear target of signaling cascades involving MAPK and PKA. Oncogene. 1996 Oct 17;13(8):1745–1754. [PubMed] [Google Scholar]
  27. Janknecht R., Nordheim A. Elk-1 protein domains required for direct and SRF-assisted DNA-binding. Nucleic Acids Res. 1992 Jul 11;20(13):3317–3324. doi: 10.1093/nar/20.13.3317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Johansen F. E., Prywes R. Two pathways for serum regulation of the c-fos serum response element require specific sequence elements and a minimal domain of serum response factor. Mol Cell Biol. 1994 Sep;14(9):5920–5928. doi: 10.1128/mcb.14.9.5920. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. König H., Ponta H., Rahmsdorf U., Büscher M., Schönthal A., Rahmsdorf H. J., Herrlich P. Autoregulation of fos: the dyad symmetry element as the major target of repression. EMBO J. 1989 Sep;8(9):2559–2566. doi: 10.1002/j.1460-2075.1989.tb08394.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Lai Z. C., Rubin G. M. Negative control of photoreceptor development in Drosophila by the product of the yan gene, an ETS domain protein. Cell. 1992 Aug 21;70(4):609–620. doi: 10.1016/0092-8674(92)90430-k. [DOI] [PubMed] [Google Scholar]
  31. Langer S. J., Bortner D. M., Roussel M. F., Sherr C. J., Ostrowski M. C. Mitogenic signaling by colony-stimulating factor 1 and ras is suppressed by the ets-2 DNA-binding domain and restored by myc overexpression. Mol Cell Biol. 1992 Dec;12(12):5355–5362. doi: 10.1128/mcb.12.12.5355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Lopez M., Oettgen P., Akbarali Y., Dendorfer U., Libermann T. A. ERP, a new member of the ets transcription factor/oncoprotein family: cloning, characterization, and differential expression during B-lymphocyte development. Mol Cell Biol. 1994 May;14(5):3292–3309. doi: 10.1128/mcb.14.5.3292. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Maira S. M., Wurtz J. M., Wasylyk B. Net (ERP/SAP2) one of the Ras-inducible TCFs, has a novel inhibitory domain with resemblance to the helix-loop-helix motif. EMBO J. 1996 Nov 1;15(21):5849–5865. [PMC free article] [PubMed] [Google Scholar]
  34. Marais R., Wynne J., Treisman R. The SRF accessory protein Elk-1 contains a growth factor-regulated transcriptional activation domain. Cell. 1993 Apr 23;73(2):381–393. doi: 10.1016/0092-8674(93)90237-k. [DOI] [PubMed] [Google Scholar]
  35. O'Neill E. M., Rebay I., Tjian R., Rubin G. M. The activities of two Ets-related transcription factors required for Drosophila eye development are modulated by the Ras/MAPK pathway. Cell. 1994 Jul 15;78(1):137–147. doi: 10.1016/0092-8674(94)90580-0. [DOI] [PubMed] [Google Scholar]
  36. Pingoud V., Zinck R., Hipskind R. A., Janknecht R., Nordheim A. Heterogeneity of ternary complex factors in HeLa cell nuclear extracts. J Biol Chem. 1994 Sep 16;269(37):23310–23317. [PubMed] [Google Scholar]
  37. Price M. A., Cruzalegui F. H., Treisman R. The p38 and ERK MAP kinase pathways cooperate to activate Ternary Complex Factors and c-fos transcription in response to UV light. EMBO J. 1996 Dec 2;15(23):6552–6563. [PMC free article] [PubMed] [Google Scholar]
  38. Price M. A., Rogers A. E., Treisman R. Comparative analysis of the ternary complex factors Elk-1, SAP-1a and SAP-2 (ERP/NET). EMBO J. 1995 Jun 1;14(11):2589–2601. doi: 10.1002/j.1460-2075.1995.tb07257.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Rao V. N., Huebner K., Isobe M., ar-Rushdi A., Croce C. M., Reddy E. S. elk, tissue-specific ets-related genes on chromosomes X and 14 near translocation breakpoints. Science. 1989 Apr 7;244(4900):66–70. doi: 10.1126/science.2539641. [DOI] [PubMed] [Google Scholar]
  40. Rivera V. M., Miranti C. K., Misra R. P., Ginty D. D., Chen R. H., Blenis J., Greenberg M. E. A growth factor-induced kinase phosphorylates the serum response factor at a site that regulates its DNA-binding activity. Mol Cell Biol. 1993 Oct;13(10):6260–6273. doi: 10.1128/mcb.13.10.6260. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Sadowski H. B., Gilman M. Z. Cell-free activation of a DNA-binding protein by epidermal growth factor. Nature. 1993 Mar 4;362(6415):79–83. doi: 10.1038/362079a0. [DOI] [PubMed] [Google Scholar]
  42. Schanke J. T., Marcuzzi A., Podzorski R. P., Van Ness B. An AP1 binding site upstream of the kappa immunoglobulin intron enhancer binds inducible factors and contributes to expression. Nucleic Acids Res. 1994 Dec 11;22(24):5425–5432. doi: 10.1093/nar/22.24.5425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Sgouras D. N., Athanasiou M. A., Beal G. J., Jr, Fisher R. J., Blair D. G., Mavrothalassitis G. J. ERF: an ETS domain protein with strong transcriptional repressor activity, can suppress ets-associated tumorigenesis and is regulated by phosphorylation during cell cycle and mitogenic stimulation. EMBO J. 1995 Oct 2;14(19):4781–4793. doi: 10.1002/j.1460-2075.1995.tb00160.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Sharp P. A. Split genes and RNA splicing. Cell. 1994 Jun 17;77(6):805–815. doi: 10.1016/0092-8674(94)90130-9. [DOI] [PubMed] [Google Scholar]
  45. Shaw P. E., Frasch S., Nordheim A. Repression of c-fos transcription is mediated through p67SRF bound to the SRE. EMBO J. 1989 Sep;8(9):2567–2574. doi: 10.1002/j.1460-2075.1989.tb08395.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Taylor M., Treisman R., Garrett N., Mohun T. Muscle-specific (CArG) and serum-responsive (SRE) promoter elements are functionally interchangeable in Xenopus embryos and mouse fibroblasts. Development. 1989 May;106(1):67–78. doi: 10.1242/dev.106.1.67. [DOI] [PubMed] [Google Scholar]
  47. Tei H., Nihonmatsu I., Yokokura T., Ueda R., Sano Y., Okuda T., Sato K., Hirata K., Fujita S. C., Yamamoto D. pokkuri, a Drosophila gene encoding an E-26-specific (Ets) domain protein, prevents overproduction of the R7 photoreceptor. Proc Natl Acad Sci U S A. 1992 Aug 1;89(15):6856–6860. doi: 10.1073/pnas.89.15.6856. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Thompson M. J., Roe M. W., Malik R. K., Blackshear P. J. Insulin and other growth factors induce binding of the ternary complex and a novel protein complex to the c-fos serum response element. J Biol Chem. 1994 Aug 19;269(33):21127–21135. [PubMed] [Google Scholar]
  49. Treisman R. Regulation of transcription by MAP kinase cascades. Curr Opin Cell Biol. 1996 Apr;8(2):205–215. doi: 10.1016/s0955-0674(96)80067-6. [DOI] [PubMed] [Google Scholar]
  50. Tuil D., Clergue N., Montarras D., Pinset C., Kahn A., Phan-Dinh-Tuy F. CC Ar GG boxes, cis-acting elements with a dual specificity. Muscle-specific transcriptional activation and serum responsiveness. J Mol Biol. 1990 Jun 20;213(4):677–686. doi: 10.1016/S0022-2836(05)80255-4. [DOI] [PubMed] [Google Scholar]
  51. Wasylyk B., Hahn S. L., Giovane A. The Ets family of transcription factors. Eur J Biochem. 1993 Jan 15;211(1-2):7–18. doi: 10.1007/978-3-642-78757-7_2. [DOI] [PubMed] [Google Scholar]
  52. Wasylyk C., Bradford A. P., Gutierrez-Hartmann A., Wasylyk B. Conserved mechanisms of Ras regulation of evolutionary related transcription factors, Ets1 and Pointed P2. Oncogene. 1997 Feb 27;14(8):899–913. doi: 10.1038/sj.onc.1200914. [DOI] [PubMed] [Google Scholar]
  53. Wasylyk C., Maira S. M., Sobieszczuk P., Wasylyk B. Reversion of Ras transformed cells by Ets transdominant mutants. Oncogene. 1994 Dec;9(12):3665–3673. [PubMed] [Google Scholar]
  54. Zinck R., Hipskind R. A., Pingoud V., Nordheim A. c-fos transcriptional activation and repression correlate temporally with the phosphorylation status of TCF. EMBO J. 1993 Jun;12(6):2377–2387. doi: 10.1002/j.1460-2075.1993.tb05892.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES