Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1997 Oct;17(10):5915–5922. doi: 10.1128/mcb.17.10.5915

Drosophila melanogaster deficient in protein kinase A manifests behavior-specific arrhythmia but normal clock function.

J Majercak 1, D Kalderon 1, I Edery 1
PMCID: PMC232439  PMID: 9315649

Abstract

Drosophila melanogaster bearing mutations in the DCO gene, which encodes the major catalytic subunit of cAMP-dependent protein kinase (PKA), displays arrhythmic locomotor activity strongly suggesting a role for PKA in the circadian timing system. This arrhythmicity might result from a requirement for PKA activity in photic resetting pathways, the timekeeping mechanism itself, or downstream effector pathways controlling overt behavioral rhythms. To address these possibilities, we examined the protein and mRNA products from the clock gene period (per) in PKA-deficient flies. The per protein (PER) and mRNA products undergo daily cycles in the heads and bodies of DCO mutants that are indistinguishable from those observed in control wild-type flies. These results indicate that PKA deficiencies affect the proper functioning of elements downstream of the Drosophila timekeeping mechanism. The requirement for PKA in the manifestation of rhythmic activity was preferentially greater in the absence of environmental cycles. However, PKA does not appear to play a universal role in output functions because the clock-controlled eclosion rhythm is normal in DCO mutants. Our results suggest that PKA plays a critical role in the flow of temporal information from circadian pacemaker cells to selective behaviors.

Full Text

The Full Text of this article is available as a PDF (581.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aronin N., Sagar S. M., Sharp F. R., Schwartz W. J. Light regulates expression of a Fos-related protein in rat suprachiasmatic nuclei. Proc Natl Acad Sci U S A. 1990 Aug;87(15):5959–5962. doi: 10.1073/pnas.87.15.5959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aronson B. D., Johnson K. A., Loros J. J., Dunlap J. C. Negative feedback defining a circadian clock: autoregulation of the clock gene frequency. Science. 1994 Mar 18;263(5153):1578–1584. doi: 10.1126/science.8128244. [DOI] [PubMed] [Google Scholar]
  3. Brandes C., Plautz J. D., Stanewsky R., Jamison C. F., Straume M., Wood K. V., Kay S. A., Hall J. C. Novel features of drosophila period Transcription revealed by real-time luciferase reporting. Neuron. 1996 Apr;16(4):687–692. doi: 10.1016/s0896-6273(00)80088-4. [DOI] [PubMed] [Google Scholar]
  4. Brindle P. K., Montminy M. R. The CREB family of transcription activators. Curr Opin Genet Dev. 1992 Apr;2(2):199–204. doi: 10.1016/s0959-437x(05)80274-6. [DOI] [PubMed] [Google Scholar]
  5. Brüggemann A., Pardo L. A., Stühmer W., Pongs O. Ether-à-go-go encodes a voltage-gated channel permeable to K+ and Ca2+ and modulated by cAMP. Nature. 1993 Sep 30;365(6445):445–448. doi: 10.1038/365445a0. [DOI] [PubMed] [Google Scholar]
  6. Byers D., Davis R. L., Kiger J. A., Jr Defect in cyclic AMP phosphodiesterase due to the dunce mutation of learning in Drosophila melanogaster. Nature. 1981 Jan 1;289(5793):79–81. doi: 10.1038/289079a0. [DOI] [PubMed] [Google Scholar]
  7. Carré I. A., Edmunds L. N., Jr Oscillator control of cell division in Euglena: cyclic AMP oscillations mediate the phasing of the cell division cycle by the circadian clock. J Cell Sci. 1993 Apr;104(Pt 4):1163–1173. doi: 10.1242/jcs.104.4.1163. [DOI] [PubMed] [Google Scholar]
  8. Chen C. N., Denome S., Davis R. L. Molecular analysis of cDNA clones and the corresponding genomic coding sequences of the Drosophila dunce+ gene, the structural gene for cAMP phosphodiesterase. Proc Natl Acad Sci U S A. 1986 Dec;83(24):9313–9317. doi: 10.1073/pnas.83.24.9313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Curtin K. D., Huang Z. J., Rosbash M. Temporally regulated nuclear entry of the Drosophila period protein contributes to the circadian clock. Neuron. 1995 Feb;14(2):365–372. doi: 10.1016/0896-6273(95)90292-9. [DOI] [PubMed] [Google Scholar]
  10. Dunlap J. C., Loros J. J., Aronson B. D., Merrow M., Crosthwaite S., Bell-Pedersen D., Johnson K., Lindgren K., Garceau N. Y. The genetic basis of the circadian clock: identification of frq and FRQ as clock components in Neurospora. Ciba Found Symp. 1995;183:3–25. doi: 10.1002/9780470514597.ch2. [DOI] [PubMed] [Google Scholar]
  11. Dushay M. S., Rosbash M., Hall J. C. The disconnected visual system mutations in Drosophila melanogaster drastically disrupt circadian rhythms. J Biol Rhythms. 1989 Spring;4(1):1–27. doi: 10.1177/074873048900400101. [DOI] [PubMed] [Google Scholar]
  12. Edery I., Rutila J. E., Rosbash M. Phase shifting of the circadian clock by induction of the Drosophila period protein. Science. 1994 Jan 14;263(5144):237–240. doi: 10.1126/science.8284676. [DOI] [PubMed] [Google Scholar]
  13. Edery I., Zwiebel L. J., Dembinska M. E., Rosbash M. Temporal phosphorylation of the Drosophila period protein. Proc Natl Acad Sci U S A. 1994 Mar 15;91(6):2260–2264. doi: 10.1073/pnas.91.6.2260. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Emery I. F., Noveral J. M., Jamison C. F., Siwicki K. K. Rhythms of Drosophila period gene expression in culture. Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):4092–4096. doi: 10.1073/pnas.94.8.4092. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Eskin A., Corrent G., Lin C. Y., McAdoo D. J. Mechanism for shifting the phase of a circadian rhythm by serotonin: involvement of cAMP. Proc Natl Acad Sci U S A. 1982 Jan;79(2):660–664. doi: 10.1073/pnas.79.2.660. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Eskin A., Takahashi J. S. Adenylate cyclase activation shifts the phase of a circadian pacemaker. Science. 1983 Apr 1;220(4592):82–84. doi: 10.1126/science.6298939. [DOI] [PubMed] [Google Scholar]
  17. Ewer J., Frisch B., Hamblen-Coyle M. J., Rosbash M., Hall J. C. Expression of the period clock gene within different cell types in the brain of Drosophila adults and mosaic analysis of these cells' influence on circadian behavioral rhythms. J Neurosci. 1992 Sep;12(9):3321–3349. doi: 10.1523/JNEUROSCI.12-09-03321.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ewer J., Hamblen-Coyle M., Rosbash M., Hall J. C. Requirement for period gene expression in the adult and not during development for locomotor activity rhythms of imaginal Drosophila melanogaster. J Neurogenet. 1990 Nov;7(1):31–73. doi: 10.3109/01677069009084151. [DOI] [PubMed] [Google Scholar]
  19. Francis S. H., Corbin J. D. Structure and function of cyclic nucleotide-dependent protein kinases. Annu Rev Physiol. 1994;56:237–272. doi: 10.1146/annurev.ph.56.030194.001321. [DOI] [PubMed] [Google Scholar]
  20. Frisch B., Hardin P. E., Hamblen-Coyle M. J., Rosbash M., Hall J. C. A promoterless period gene mediates behavioral rhythmicity and cyclical per expression in a restricted subset of the Drosophila nervous system. Neuron. 1994 Mar;12(3):555–570. doi: 10.1016/0896-6273(94)90212-7. [DOI] [PubMed] [Google Scholar]
  21. Giebultowicz J. M., Hege D. M. Circadian clock in Malpighian tubules. Nature. 1997 Apr 17;386(6626):664–664. doi: 10.1038/386664a0. [DOI] [PubMed] [Google Scholar]
  22. Ginty D. D., Kornhauser J. M., Thompson M. A., Bading H., Mayo K. E., Takahashi J. S., Greenberg M. E. Regulation of CREB phosphorylation in the suprachiasmatic nucleus by light and a circadian clock. Science. 1993 Apr 9;260(5105):238–241. doi: 10.1126/science.8097062. [DOI] [PubMed] [Google Scholar]
  23. Handler A. M., Konopka R. J. Transplantation of a circadian pacemaker in Drosophila. Nature. 1979 May 17;279(5710):236–238. doi: 10.1038/279236a0. [DOI] [PubMed] [Google Scholar]
  24. Hardin P. E. Analysis of period mRNA cycling in Drosophila head and body tissues indicates that body oscillators behave differently from head oscillators. Mol Cell Biol. 1994 Nov;14(11):7211–7218. doi: 10.1128/mcb.14.11.7211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Hardin P. E., Hall J. C., Rosbash M. Behavioral and molecular analyses suggest that circadian output is disrupted by disconnected mutants in D. melanogaster. EMBO J. 1992 Jan;11(1):1–6. doi: 10.1002/j.1460-2075.1992.tb05020.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Hardin P. E., Hall J. C., Rosbash M. Circadian oscillations in period gene mRNA levels are transcriptionally regulated. Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):11711–11715. doi: 10.1073/pnas.89.24.11711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Hardin P. E., Hall J. C., Rosbash M. Feedback of the Drosophila period gene product on circadian cycling of its messenger RNA levels. Nature. 1990 Feb 8;343(6258):536–540. doi: 10.1038/343536a0. [DOI] [PubMed] [Google Scholar]
  28. Hunter-Ensor M., Ousley A., Sehgal A. Regulation of the Drosophila protein timeless suggests a mechanism for resetting the circadian clock by light. Cell. 1996 Mar 8;84(5):677–685. doi: 10.1016/s0092-8674(00)81046-6. [DOI] [PubMed] [Google Scholar]
  29. Kalderon D., Rubin G. M. Isolation and characterization of Drosophila cAMP-dependent protein kinase genes. Genes Dev. 1988 Dec;2(12A):1539–1556. doi: 10.1101/gad.2.12a.1539. [DOI] [PubMed] [Google Scholar]
  30. Khalsa S. B., Block G. D. Phase-shifting of a neuronal circadian pacemaker in Bulla gouldiana by pentylenetetrazol. Comp Biochem Physiol C. 1992 Apr;101(3):557–560. doi: 10.1016/0742-8413(92)90086-m. [DOI] [PubMed] [Google Scholar]
  31. Konopka R. J., Benzer S. Clock mutants of Drosophila melanogaster. Proc Natl Acad Sci U S A. 1971 Sep;68(9):2112–2116. doi: 10.1073/pnas.68.9.2112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Kornhauser J. M., Nelson D. E., Mayo K. E., Takahashi J. S. Photic and circadian regulation of c-fos gene expression in the hamster suprachiasmatic nucleus. Neuron. 1990 Aug;5(2):127–134. doi: 10.1016/0896-6273(90)90303-w. [DOI] [PubMed] [Google Scholar]
  33. Kornhauser J. M., Nelson D. E., Mayo K. E., Takahashi J. S. Regulation of jun-B messenger RNA and AP-1 activity by light and a circadian clock. Science. 1992 Mar 20;255(5051):1581–1584. doi: 10.1126/science.1549784. [DOI] [PubMed] [Google Scholar]
  34. Lane M. E., Kalderon D. Genetic investigation of cAMP-dependent protein kinase function in Drosophila development. Genes Dev. 1993 Jul;7(7A):1229–1243. doi: 10.1101/gad.7.7a.1229. [DOI] [PubMed] [Google Scholar]
  35. Lee C., Parikh V., Itsukaichi T., Bae K., Edery I. Resetting the Drosophila clock by photic regulation of PER and a PER-TIM complex. Science. 1996 Mar 22;271(5256):1740–1744. doi: 10.1126/science.271.5256.1740. [DOI] [PubMed] [Google Scholar]
  36. Levine J. D., Casey C. I., Kalderon D. D., Jackson F. R. Altered circadian pacemaker functions and cyclic AMP rhythms in the Drosophila learning mutant dunce. Neuron. 1994 Oct;13(4):967–974. doi: 10.1016/0896-6273(94)90262-3. [DOI] [PubMed] [Google Scholar]
  37. Li W., Tully T., Kalderon D. Effects of a conditional Drosophila PKA mutant on olfactory learning and memory. Learn Mem. 1996 Jan-Feb;2(6):320–333. doi: 10.1101/lm.2.6.320. [DOI] [PubMed] [Google Scholar]
  38. Liu X., Yu Q. A., Huang Z. S., Zwiebel L. J., Hall J. C., Rosbash M. The strength and periodicity of D. melanogaster circadian rhythms are differentially affected by alterations in period gene expression. Neuron. 1991 May;6(5):753–766. doi: 10.1016/0896-6273(91)90172-v. [DOI] [PubMed] [Google Scholar]
  39. Marrus S. B., Zeng H., Rosbash M. Effect of constant light and circadian entrainment of perS flies: evidence for light-mediated delay of the negative feedback loop in Drosophila. EMBO J. 1996 Dec 16;15(24):6877–6886. [PMC free article] [PubMed] [Google Scholar]
  40. Meléndez A., Li W., Kalderon D. Activity, expression and function of a second Drosophila protein kinase A catalytic subunit gene. Genetics. 1995 Dec;141(4):1507–1520. doi: 10.1093/genetics/141.4.1507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Myers M. P., Wager-Smith K., Rothenfluh-Hilfiker A., Young M. W. Light-induced degradation of TIMELESS and entrainment of the Drosophila circadian clock. Science. 1996 Mar 22;271(5256):1736–1740. doi: 10.1126/science.271.5256.1736. [DOI] [PubMed] [Google Scholar]
  42. Newby L. M., Jackson F. R. A new biological rhythm mutant of Drosophila melanogaster that identifies a gene with an essential embryonic function. Genetics. 1993 Dec;135(4):1077–1090. doi: 10.1093/genetics/135.4.1077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Newby L. M., Jackson F. R. Drosophila ebony mutants have altered circadian activity rhythms but normal eclosion rhythms. J Neurogenet. 1991 Feb;7(2-3):85–101. doi: 10.3109/01677069109066213. [DOI] [PubMed] [Google Scholar]
  44. Nikaido S. S., Takahashi J. S. Twenty-four hour oscillation of cAMP in chick pineal cells: role of cAMP in the acute and circadian regulation of melatonin production. Neuron. 1989 Nov;3(5):609–619. doi: 10.1016/0896-6273(89)90271-7. [DOI] [PubMed] [Google Scholar]
  45. Prosser R. A., Gillette M. U. The mammalian circadian clock in the suprachiasmatic nuclei is reset in vitro by cAMP. J Neurosci. 1989 Mar;9(3):1073–1081. doi: 10.1523/JNEUROSCI.09-03-01073.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Rosbash M., Allada R., Dembinska M., Guo W. Q., Le M., Marrus S., Qian Z., Rutila J., Yaglom J., Zeng H. A Drosophila circadian clock. Cold Spring Harb Symp Quant Biol. 1996;61:265–278. [PubMed] [Google Scholar]
  47. Rusak B., Robertson H. A., Wisden W., Hunt S. P. Light pulses that shift rhythms induce gene expression in the suprachiasmatic nucleus. Science. 1990 Jun 8;248(4960):1237–1240. doi: 10.1126/science.2112267. [DOI] [PubMed] [Google Scholar]
  48. Sassone-Corsi P. Transcription factors responsive to cAMP. Annu Rev Cell Dev Biol. 1995;11:355–377. doi: 10.1146/annurev.cb.11.110195.002035. [DOI] [PubMed] [Google Scholar]
  49. Sehgal A., Price J. L., Man B., Young M. W. Loss of circadian behavioral rhythms and per RNA oscillations in the Drosophila mutant timeless. Science. 1994 Mar 18;263(5153):1603–1606. doi: 10.1126/science.8128246. [DOI] [PubMed] [Google Scholar]
  50. Sehgal A., Rothenfluh-Hilfiker A., Hunter-Ensor M., Chen Y., Myers M. P., Young M. W. Rhythmic expression of timeless: a basis for promoting circadian cycles in period gene autoregulation. Science. 1995 Nov 3;270(5237):808–810. doi: 10.1126/science.270.5237.808. [DOI] [PubMed] [Google Scholar]
  51. Siwicki K. K., Eastman C., Petersen G., Rosbash M., Hall J. C. Antibodies to the period gene product of Drosophila reveal diverse tissue distribution and rhythmic changes in the visual system. Neuron. 1988 Apr;1(2):141–150. doi: 10.1016/0896-6273(88)90198-5. [DOI] [PubMed] [Google Scholar]
  52. Skoulakis E. M., Kalderon D., Davis R. L. Preferential expression in mushroom bodies of the catalytic subunit of protein kinase A and its role in learning and memory. Neuron. 1993 Aug;11(2):197–208. doi: 10.1016/0896-6273(93)90178-t. [DOI] [PubMed] [Google Scholar]
  53. Steller H., Fischbach K. F., Rubin G. M. Disconnected: a locus required for neuronal pathway formation in the visual system of Drosophila. Cell. 1987 Sep 25;50(7):1139–1153. doi: 10.1016/0092-8674(87)90180-2. [DOI] [PubMed] [Google Scholar]
  54. Takahashi J. S. Circadian-clock regulation of gene expression. Curr Opin Genet Dev. 1993 Apr;3(2):301–309. doi: 10.1016/0959-437x(93)90038-q. [DOI] [PubMed] [Google Scholar]
  55. Techel D., Gebauer G., Kohler W., Braumann T., Jastorff B., Rensing L. On the role of Ca2(+)-calmodulin-dependent and cAMP-dependent protein phosphorylation in the circadian rhythm of Neurospora crassa. J Comp Physiol B. 1990;159(6):695–706. doi: 10.1007/BF00691715. [DOI] [PubMed] [Google Scholar]
  56. Turek F. W., Pinto L. H., Vitaterna M. H., Penev P. D., Zee P. C., Takahashi J. S. Pharmacological and genetic approaches for the study of circadian rhythms in mammals. Front Neuroendocrinol. 1995 Jul;16(3):191–223. doi: 10.1006/frne.1995.1007. [DOI] [PubMed] [Google Scholar]
  57. Vosshall L. B., Young M. W. Circadian rhythms in Drosophila can be driven by period expression in a restricted group of central brain cells. Neuron. 1995 Aug;15(2):345–360. doi: 10.1016/0896-6273(95)90039-x. [DOI] [PubMed] [Google Scholar]
  58. Wheeler D. A., Hamblen-Coyle M. J., Dushay M. S., Hall J. C. Behavior in light-dark cycles of Drosophila mutants that are arrhythmic, blind, or both. J Biol Rhythms. 1993 Spring;8(1):67–94. doi: 10.1177/074873049300800106. [DOI] [PubMed] [Google Scholar]
  59. Zatz M. Does the circadian pacemaker act through cyclic AMP to drive the melatonin rhythm in chick pineal cells? J Biol Rhythms. 1992 Winter;7(4):301–311. doi: 10.1177/074873049200700404. [DOI] [PubMed] [Google Scholar]
  60. Zeng H., Hardin P. E., Rosbash M. Constitutive overexpression of the Drosophila period protein inhibits period mRNA cycling. EMBO J. 1994 Aug 1;13(15):3590–3598. doi: 10.1002/j.1460-2075.1994.tb06666.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Zeng H., Qian Z., Myers M. P., Rosbash M. A light-entrainment mechanism for the Drosophila circadian clock. Nature. 1996 Mar 14;380(6570):129–135. doi: 10.1038/380129a0. [DOI] [PubMed] [Google Scholar]
  62. Zerr D. M., Hall J. C., Rosbash M., Siwicki K. K. Circadian fluctuations of period protein immunoreactivity in the CNS and the visual system of Drosophila. J Neurosci. 1990 Aug;10(8):2749–2762. doi: 10.1523/JNEUROSCI.10-08-02749.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES