Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1997 Nov;17(11):6330–6338. doi: 10.1128/mcb.17.11.6330

Transcriptional activation by p53 of the human type IV collagenase (gelatinase A or matrix metalloproteinase 2) promoter.

J Bian 1, Y Sun 1
PMCID: PMC232484  PMID: 9343394

Abstract

p53, a tumor suppressor and a transcription factor, has been shown to transcriptionally activate the expression of a number of important genes involved in the regulation of cell growth, DNA damage, angiogenesis, and apoptosis. In a computer search for other potential p53 target genes, we identified a perfect p53 binding site in the promoter of the human type IV collagenase (also called 72-kDa gelatinase or matrix metalloproteinase 2 [MMP-2]) gene. This p53 binding site was found to specifically bind to p53 protein in a gel shift assay. Transcription assays with luciferase reporters driven by the promoter or enhancer of the type IV collagenase gene revealed that (i) activation of the promoter activity is p53 binding site dependent in p53-positive cells but not in p53-negative cells and (ii) wild-type p53, but not p53 mutants commonly found in human cancers, transactivates luciferase expression driven by the type IV collagenase promoter as well as by a p53 site-containing enhancer element in the promoter. Significantly, expression of the endogenous type IV collagenase is also under the control of p53. Treatment of U2-OS cells, a wild-type p53-containing osteogenic sarcoma line, with a common p53 inducer, etoposide, induced p53 DNA binding and transactivation activities in a time-dependent manner. Induction of type IV collagenase expression followed the p53 activation pattern. No induction of type IV collagenase expression can be detected under the same experimental conditions in p53-negative Saos-2 cells. All these in vitro and in vivo assays strongly suggest that the type IV collagenase gene is a p53 target gene and that its expression is subject to p53 regulation. Our finding links p53 to a member of the MMP genes, a family of genes implicated in trophoblast implantation, wound healing, angiogenesis, arthritis, and tumor cell invasion. p53 may regulate these processes by upregulating expression of type IV collagenase.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barak Y., Juven T., Haffner R., Oren M. mdm2 expression is induced by wild type p53 activity. EMBO J. 1993 Feb;12(2):461–468. doi: 10.1002/j.1460-2075.1993.tb05678.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bian J., Jacobs C., Wang Y., Sun Y. Characterization of a putative p53 binding site in the promoter of the mouse tissue inhibitor of metalloproteinases-3 (TIMP-3) gene: TIMP-3 is not a p53 target gene. Carcinogenesis. 1996 Dec;17(12):2559–2562. doi: 10.1093/carcin/17.12.2559. [DOI] [PubMed] [Google Scholar]
  3. Birkedal-Hansen H., Moore W. G., Bodden M. K., Windsor L. J., Birkedal-Hansen B., DeCarlo A., Engler J. A. Matrix metalloproteinases: a review. Crit Rev Oral Biol Med. 1993;4(2):197–250. doi: 10.1177/10454411930040020401. [DOI] [PubMed] [Google Scholar]
  4. Birkedal-Hansen H. Proteolytic remodeling of extracellular matrix. Curr Opin Cell Biol. 1995 Oct;7(5):728–735. doi: 10.1016/0955-0674(95)80116-2. [DOI] [PubMed] [Google Scholar]
  5. Bouck N. P53 and angiogenesis. Biochim Biophys Acta. 1996 May 16;1287(1):63–66. doi: 10.1016/0304-419x(96)00005-4. [DOI] [PubMed] [Google Scholar]
  6. Brown P. D., Levy A. T., Margulies I. M., Liotta L. A., Stetler-Stevenson W. G. Independent expression and cellular processing of Mr 72,000 type IV collagenase and interstitial collagenase in human tumorigenic cell lines. Cancer Res. 1990 Oct 1;50(19):6184–6191. [PubMed] [Google Scholar]
  7. Chumakov A. M., Miller C. W., Chen D. L., Koeffler H. P. Analysis of p53 transactivation through high-affinity binding sites. Oncogene. 1993 Nov;8(11):3005–3011. [PubMed] [Google Scholar]
  8. Dameron K. M., Volpert O. V., Tainsky M. A., Bouck N. Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1. Science. 1994 Sep 9;265(5178):1582–1584. doi: 10.1126/science.7521539. [DOI] [PubMed] [Google Scholar]
  9. Docherty A. J., O'Connell J., Crabbe T., Angal S., Murphy G. The matrix metalloproteinases and their natural inhibitors: prospects for treating degenerative tissue diseases. Trends Biotechnol. 1992 Jun;10(6):200–207. doi: 10.1016/0167-7799(92)90214-g. [DOI] [PubMed] [Google Scholar]
  10. Donehower L. A., Bradley A. The tumor suppressor p53. Biochim Biophys Acta. 1993 Aug 23;1155(2):181–205. doi: 10.1016/0304-419x(93)90004-v. [DOI] [PubMed] [Google Scholar]
  11. Frisch S. M., Morisaki J. H. Positive and negative transcriptional elements of the human type IV collagenase gene. Mol Cell Biol. 1990 Dec;10(12):6524–6532. doi: 10.1128/mcb.10.12.6524. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Frisch S. M., Reich R., Collier I. E., Genrich L. T., Martin G., Goldberg G. I. Adenovirus E1A represses protease gene expression and inhibits metastasis of human tumor cells. Oncogene. 1990 Jan;5(1):75–83. [PubMed] [Google Scholar]
  13. Garbisa S., Pozzatti R., Muschel R. J., Saffiotti U., Ballin M., Goldfarb R. H., Khoury G., Liotta L. A. Secretion of type IV collagenolytic protease and metastatic phenotype: induction by transfection with c-Ha-ras but not c-Ha-ras plus Ad2-E1a. Cancer Res. 1987 Mar 15;47(6):1523–1528. [PubMed] [Google Scholar]
  14. Greenblatt M. S., Bennett W. P., Hollstein M., Harris C. C. Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res. 1994 Sep 15;54(18):4855–4878. [PubMed] [Google Scholar]
  15. Haffner R., Oren M. Biochemical properties and biological effects of p53. Curr Opin Genet Dev. 1995 Feb;5(1):84–90. doi: 10.1016/s0959-437x(95)90058-6. [DOI] [PubMed] [Google Scholar]
  16. Harendza S., Pollock A. S., Mertens P. R., Lovett D. H. Tissue-specific enhancer-promoter interactions regulate high level constitutive expression of matrix metalloproteinase 2 by glomerular mesangial cells. J Biol Chem. 1995 Aug 11;270(32):18786–18796. doi: 10.1074/jbc.270.32.18786. [DOI] [PubMed] [Google Scholar]
  17. Hollstein M., Sidransky D., Vogelstein B., Harris C. C. p53 mutations in human cancers. Science. 1991 Jul 5;253(5015):49–53. doi: 10.1126/science.1905840. [DOI] [PubMed] [Google Scholar]
  18. Huhtala P., Chow L. T., Tryggvason K. Structure of the human type IV collagenase gene. J Biol Chem. 1990 Jul 5;265(19):11077–11082. [PubMed] [Google Scholar]
  19. Hujanen E. S., Väisänen A., Zheng A., Tryggvason K., Turpeenniemi-Hujanen T. Modulation of M(r) 72,000 and M(r) 92,000 type-IV collagenase (gelatinase A and B) gene expression by interferons alpha and gamma in human melanoma. Int J Cancer. 1994 Aug 15;58(4):582–586. doi: 10.1002/ijc.2910580422. [DOI] [PubMed] [Google Scholar]
  20. Kastan M. B., Canman C. E., Leonard C. J. P53, cell cycle control and apoptosis: implications for cancer. Cancer Metastasis Rev. 1995 Mar;14(1):3–15. doi: 10.1007/BF00690207. [DOI] [PubMed] [Google Scholar]
  21. Kastan M. B., Zhan Q., el-Deiry W. S., Carrier F., Jacks T., Walsh W. V., Plunkett B. S., Vogelstein B., Fornace A. J., Jr A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell. 1992 Nov 13;71(4):587–597. doi: 10.1016/0092-8674(92)90593-2. [DOI] [PubMed] [Google Scholar]
  22. Kinoshita T., Sato H., Takino T., Itoh M., Akizawa T., Seiki M. Processing of a precursor of 72-kilodalton type IV collagenase/gelatinase A by a recombinant membrane-type 1 matrix metalloproteinase. Cancer Res. 1996 Jun 1;56(11):2535–2538. [PubMed] [Google Scholar]
  23. Ko L. J., Prives C. p53: puzzle and paradigm. Genes Dev. 1996 May 1;10(9):1054–1072. doi: 10.1101/gad.10.9.1054. [DOI] [PubMed] [Google Scholar]
  24. Kohn E. C., Jacobs W., Kim Y. S., Alessandro R., Stetler-Stevenson W. G., Liotta L. A. Calcium influx modulates expression of matrix metalloproteinase-2 (72-kDa type IV collagenase, gelatinase A). J Biol Chem. 1994 Aug 26;269(34):21505–21511. [PubMed] [Google Scholar]
  25. Labrecque S., Matlashewski G. J. Viability of wild type p53-containing and p53-deficient tumor cells following anticancer treatment: the use of human papillomavirus E6 to target p53. Oncogene. 1995 Jul 20;11(2):387–392. [PubMed] [Google Scholar]
  26. Lane D. P. p53 and human cancers. Br Med Bull. 1994 Jul;50(3):582–599. doi: 10.1093/oxfordjournals.bmb.a072911. [DOI] [PubMed] [Google Scholar]
  27. Levy A. T., Cioce V., Sobel M. E., Garbisa S., Grigioni W. F., Liotta L. A., Stetler-Stevenson W. G. Increased expression of the Mr 72,000 type IV collagenase in human colonic adenocarcinoma. Cancer Res. 1991 Jan 1;51(1):439–444. [PubMed] [Google Scholar]
  28. Liotta L. A., Steeg P. S., Stetler-Stevenson W. G. Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation. Cell. 1991 Jan 25;64(2):327–336. doi: 10.1016/0092-8674(91)90642-c. [DOI] [PubMed] [Google Scholar]
  29. Ludes-Meyers J. H., Subler M. A., Shivakumar C. V., Munoz R. M., Jiang P., Bigger J. E., Brown D. R., Deb S. P., Deb S. Transcriptional activation of the human epidermal growth factor receptor promoter by human p53. Mol Cell Biol. 1996 Nov;16(11):6009–6019. doi: 10.1128/mcb.16.11.6009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Miyashita T., Reed J. C. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell. 1995 Jan 27;80(2):293–299. doi: 10.1016/0092-8674(95)90412-3. [DOI] [PubMed] [Google Scholar]
  31. Montgomery A. M., De Clerck Y. A., Langley K. E., Reisfeld R. A., Mueller B. M. Melanoma-mediated dissolution of extracellular matrix: contribution of urokinase-dependent and metalloproteinase-dependent proteolytic pathways. Cancer Res. 1993 Feb 1;53(3):693–700. [PubMed] [Google Scholar]
  32. Morris G. F., Bischoff J. R., Mathews M. B. Transcriptional activation of the human proliferating-cell nuclear antigen promoter by p53. Proc Natl Acad Sci U S A. 1996 Jan 23;93(2):895–899. doi: 10.1073/pnas.93.2.895. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Mummenbrauer T., Janus F., Müller B., Wiesmüller L., Deppert W., Grosse F. p53 Protein exhibits 3'-to-5' exonuclease activity. Cell. 1996 Jun 28;85(7):1089–1099. doi: 10.1016/s0092-8674(00)81309-4. [DOI] [PubMed] [Google Scholar]
  34. Murphy M., Hinman A., Levine A. J. Wild-type p53 negatively regulates the expression of a microtubule-associated protein. Genes Dev. 1996 Dec 1;10(23):2971–2980. doi: 10.1101/gad.10.23.2971. [DOI] [PubMed] [Google Scholar]
  35. Nakajima M., Lotan D., Baig M. M., Carralero R. M., Wood W. R., Hendrix M. J., Lotan R. Inhibition by retinoic acid of type IV collagenolysis and invasion through reconstituted basement membrane by metastatic rat mammary adenocarcinoma cells. Cancer Res. 1989 Apr 1;49(7):1698–1706. [PubMed] [Google Scholar]
  36. Okamoto K., Beach D. Cyclin G is a transcriptional target of the p53 tumor suppressor protein. EMBO J. 1994 Oct 17;13(20):4816–4822. doi: 10.1002/j.1460-2075.1994.tb06807.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Ory K., Legros Y., Auguin C., Soussi T. Analysis of the most representative tumour-derived p53 mutants reveals that changes in protein conformation are not correlated with loss of transactivation or inhibition of cell proliferation. EMBO J. 1994 Aug 1;13(15):3496–3504. doi: 10.1002/j.1460-2075.1994.tb06656.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Pepper M. S., Vassalli J. D., Wilks J. W., Schweigerer L., Orci L., Montesano R. Modulation of bovine microvascular endothelial cell proteolytic properties by inhibitors of angiogenesis. J Cell Biochem. 1994 Aug;55(4):419–434. doi: 10.1002/jcb.240550403. [DOI] [PubMed] [Google Scholar]
  39. Selivanova G., Wiman K. G. p53: a cell cycle regulator activated by DNA damage. Adv Cancer Res. 1995;66:143–180. doi: 10.1016/s0065-230x(08)60253-5. [DOI] [PubMed] [Google Scholar]
  40. Shivakumar C. V., Brown D. R., Deb S., Deb S. P. Wild-type human p53 transactivates the human proliferating cell nuclear antigen promoter. Mol Cell Biol. 1995 Dec;15(12):6785–6793. doi: 10.1128/mcb.15.12.6785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Singh R. K., Gutman M., Reich R., Bar-Eli M. Ultraviolet B irradiation promotes tumorigenic and metastatic properties in primary cutaneous melanoma via induction of interleukin 8. Cancer Res. 1995 Aug 15;55(16):3669–3674. [PubMed] [Google Scholar]
  42. Somasundaram K., Jayaraman G., Williams T., Moran E., Frisch S., Thimmapaya B. Repression of a matrix metalloprotease gene by E1A correlates with its ability to bind to cell type-specific transcription factor AP-2. Proc Natl Acad Sci U S A. 1996 Apr 2;93(7):3088–3093. doi: 10.1073/pnas.93.7.3088. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Stetler-Stevenson W. G., Aznavoorian S., Liotta L. A. Tumor cell interactions with the extracellular matrix during invasion and metastasis. Annu Rev Cell Biol. 1993;9:541–573. doi: 10.1146/annurev.cb.09.110193.002545. [DOI] [PubMed] [Google Scholar]
  44. Strongin A. Y., Collier I., Bannikov G., Marmer B. L., Grant G. A., Goldberg G. I. Mechanism of cell surface activation of 72-kDa type IV collagenase. Isolation of the activated form of the membrane metalloprotease. J Biol Chem. 1995 Mar 10;270(10):5331–5338. doi: 10.1074/jbc.270.10.5331. [DOI] [PubMed] [Google Scholar]
  45. Sun Y., Bian J., Wang Y., Jacobs C. Activation of p53 transcriptional activity by 1,10-phenanthroline, a metal chelator and redox sensitive compound. Oncogene. 1997 Jan 30;14(4):385–393. doi: 10.1038/sj.onc.1200834. [DOI] [PubMed] [Google Scholar]
  46. Sun Y., Dong Z., Nakamura K., Colburn N. H. Dosage-dependent dominance over wild-type p53 of a mutant p53 isolated from nasopharyngeal carcinoma. FASEB J. 1993 Jul;7(10):944–950. doi: 10.1096/fasebj.7.10.8344492. [DOI] [PubMed] [Google Scholar]
  47. Sun Y., Hegamyer G., Colburn N. H. Molecular cloning of five messenger RNAs differentially expressed in preneoplastic or neoplastic JB6 mouse epidermal cells: one is homologous to human tissue inhibitor of metalloproteinases-3. Cancer Res. 1994 Mar 1;54(5):1139–1144. [PubMed] [Google Scholar]
  48. Sun Y., Hegamyer G., Kim H., Sithanandam K., Li H., Watts R., Colburn N. H. Molecular cloning of mouse tissue inhibitor of metalloproteinases-3 and its promoter. Specific lack of expression in neoplastic JB6 cells may reflect altered gene methylation. J Biol Chem. 1995 Aug 18;270(33):19312–19319. doi: 10.1074/jbc.270.33.19312. [DOI] [PubMed] [Google Scholar]
  49. Sun Y., Pommier Y., Colburn N. H. Acquisition of a growth-inhibitory response to phorbol ester involves DNA damage. Cancer Res. 1992 Apr 1;52(7):1907–1915. [PubMed] [Google Scholar]
  50. Tishler R. B., Calderwood S. K., Coleman C. N., Price B. D. Increases in sequence specific DNA binding by p53 following treatment with chemotherapeutic and DNA damaging agents. Cancer Res. 1993 May 15;53(10 Suppl):2212–2216. [PubMed] [Google Scholar]
  51. Vojta P. J., Barrett J. C. Genetic analysis of cellular senescence. Biochim Biophys Acta. 1995 Jul 28;1242(1):29–41. doi: 10.1016/0304-419x(95)00002-w. [DOI] [PubMed] [Google Scholar]
  52. Wang Q., Zambetti G. P., Suttle D. P. Inhibition of DNA topoisomerase II alpha gene expression by the p53 tumor suppressor. Mol Cell Biol. 1997 Jan;17(1):389–397. doi: 10.1128/mcb.17.1.389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Whitacre C. M., Hashimoto H., Tsai M. L., Chatterjee S., Berger S. J., Berger N. A. Involvement of NAD-poly(ADP-ribose) metabolism in p53 regulation and its consequences. Cancer Res. 1995 Sep 1;55(17):3697–3701. [PubMed] [Google Scholar]
  54. Williams T., Tjian R. Analysis of the DNA-binding and activation properties of the human transcription factor AP-2. Genes Dev. 1991 Apr;5(4):670–682. doi: 10.1101/gad.5.4.670. [DOI] [PubMed] [Google Scholar]
  55. Woessner J. F., Jr Matrix metalloproteinases and their inhibitors in connective tissue remodeling. FASEB J. 1991 May;5(8):2145–2154. [PubMed] [Google Scholar]
  56. Young T. N., Pizzo S. V., Stack M. S. A plasma membrane-associated component of ovarian adenocarcinoma cells enhances the catalytic efficiency of matrix metalloproteinase-2. J Biol Chem. 1995 Jan 20;270(3):999–1002. doi: 10.1074/jbc.270.3.999. [DOI] [PubMed] [Google Scholar]
  57. Yu M., Sato H., Seiki M., Thompson E. W. Complex regulation of membrane-type matrix metalloproteinase expression and matrix metalloproteinase-2 activation by concanavalin A in MDA-MB-231 human breast cancer cells. Cancer Res. 1995 Aug 1;55(15):3272–3277. [PubMed] [Google Scholar]
  58. Zeng Y. X., Somasundaram K., el-Deiry W. S. AP2 inhibits cancer cell growth and activates p21WAF1/CIP1 expression. Nat Genet. 1997 Jan;15(1):78–82. doi: 10.1038/ng0197-78. [DOI] [PubMed] [Google Scholar]
  59. Zhang W., Guo X. Y., Hu G. Y., Liu W. B., Shay J. W., Deisseroth A. B. A temperature-sensitive mutant of human p53. EMBO J. 1994 Jun 1;13(11):2535–2544. doi: 10.1002/j.1460-2075.1994.tb06543.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Zhang W., Shay J. W., Deisseroth A. Inactive p53 mutants may enhance the transcriptional activity of wild-type p53. Cancer Res. 1993 Oct 15;53(20):4772–4775. [PubMed] [Google Scholar]
  61. el-Deiry W. S., Kern S. E., Pietenpol J. A., Kinzler K. W., Vogelstein B. Definition of a consensus binding site for p53. Nat Genet. 1992 Apr;1(1):45–49. doi: 10.1038/ng0492-45. [DOI] [PubMed] [Google Scholar]
  62. el-Deiry W. S., Tokino T., Velculescu V. E., Levy D. B., Parsons R., Trent J. M., Lin D., Mercer W. E., Kinzler K. W., Vogelstein B. WAF1, a potential mediator of p53 tumor suppression. Cell. 1993 Nov 19;75(4):817–825. doi: 10.1016/0092-8674(93)90500-p. [DOI] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES