Abstract
Previous studies attributed the yeast (Saccharomyces cerevisiae) cdc1(Ts) growth defect to loss of an Mn2+-dependent function. In this report we show that cdc1(Ts) temperature-sensitive growth is also associated with an increase in cytosolic Ca2+. We identified two recessive suppressors of the cdc1(Ts) temperature-sensitive growth which block Ca2+ uptake and accumulation, suggesting that cytosolic Ca2+ exacerbates or is responsible for the cdc1(Ts) growth defect. One of the cdc1(Ts) suppressors is identical to a gene, MID1, recently implicated in mating pheromone-stimulated Ca2+ uptake. The gene (CCH1) corresponding to the second suppressor encodes a protein that bears significant sequence similarity to the pore-forming subunit (alpha1) of plasma membrane, voltage-gated Ca2+ channels from higher eukaryotes. Strains lacking Mid1 or Cch1 protein exhibit a defect in pheromone-induced Ca2+ uptake and consequently lose viability upon mating arrest. The mid1delta and cch1delta mutants also display reduced tolerance to monovalent cations such as Li+, suggesting a role for Ca2+ uptake in the calcineurin-dependent ion stress response. Finally, mid1delta cch1delta double mutants are, by both physiological and genetic criteria, identical to single mutants. These and other results suggest Mid1 and Cch1 are components of a yeast Ca2+ channel that may mediate Ca2+ uptake in response to mating pheromone, salt stress, and Mn2+ depletion.
Full Text
The Full Text of this article is available as a PDF (1.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Beeler T., Gable K., Zhao C., Dunn T. A novel protein, CSG2p, is required for Ca2+ regulation in Saccharomyces cerevisiae. J Biol Chem. 1994 Mar 11;269(10):7279–7284. [PubMed] [Google Scholar]
- Casadaban M. J., Martinez-Arias A., Shapira S. K., Chou J. Beta-galactosidase gene fusions for analyzing gene expression in escherichia coli and yeast. Methods Enzymol. 1983;100:293–308. doi: 10.1016/0076-6879(83)00063-4. [DOI] [PubMed] [Google Scholar]
- Catterall W. A. Structure and function of voltage-gated ion channels. Annu Rev Biochem. 1995;64:493–531. doi: 10.1146/annurev.bi.64.070195.002425. [DOI] [PubMed] [Google Scholar]
- Cunningham K. W., Fink G. R. Ca2+ transport in Saccharomyces cerevisiae. J Exp Biol. 1994 Nov;196:157–166. doi: 10.1242/jeb.196.1.157. [DOI] [PubMed] [Google Scholar]
- Cunningham K. W., Fink G. R. Calcineurin inhibits VCX1-dependent H+/Ca2+ exchange and induces Ca2+ ATPases in Saccharomyces cerevisiae. Mol Cell Biol. 1996 May;16(5):2226–2237. doi: 10.1128/mcb.16.5.2226. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cunningham K. W., Fink G. R. Calcineurin-dependent growth control in Saccharomyces cerevisiae mutants lacking PMC1, a homolog of plasma membrane Ca2+ ATPases. J Cell Biol. 1994 Feb;124(3):351–363. doi: 10.1083/jcb.124.3.351. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cyert M. S., Thorner J. Regulatory subunit (CNB1 gene product) of yeast Ca2+/calmodulin-dependent phosphoprotein phosphatases is required for adaptation to pheromone. Mol Cell Biol. 1992 Aug;12(8):3460–3469. doi: 10.1128/mcb.12.8.3460. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davis T. N. Calcium in Saccharomyces cerevisiae. Adv Second Messenger Phosphoprotein Res. 1995;30:339–358. doi: 10.1016/s1040-7952(05)80014-x. [DOI] [PubMed] [Google Scholar]
- De Waard M., Gurnett C. A., Campbell K. P. Structural and functional diversity of voltage-activated calcium channels. Ion Channels. 1996;4:41–87. doi: 10.1007/978-1-4899-1775-1_2. [DOI] [PubMed] [Google Scholar]
- De Waard M., Liu H., Walker D., Scott V. E., Gurnett C. A., Campbell K. P. Direct binding of G-protein betagamma complex to voltage-dependent calcium channels. Nature. 1997 Jan 30;385(6615):446–450. doi: 10.1038/385446a0. [DOI] [PubMed] [Google Scholar]
- Dunn T., Gable K., Beeler T. Regulation of cellular Ca2+ by yeast vacuoles. J Biol Chem. 1994 Mar 11;269(10):7273–7278. [PubMed] [Google Scholar]
- Farcasanu I. C., Hirata D., Tsuchiya E., Nishiyama F., Miyakawa T. Protein phosphatase 2B of Saccharomyces cerevisiae is required for tolerance to manganese, in blocking the entry of ions into the cells. Eur J Biochem. 1995 Sep 15;232(3):712–717. [PubMed] [Google Scholar]
- Gaber R. F. Molecular genetics of yeast ion transport. Int Rev Cytol. 1992;137:299–353. doi: 10.1016/s0074-7696(08)62679-0. [DOI] [PubMed] [Google Scholar]
- Hofmann F., Biel M., Flockerzi V. Molecular basis for Ca2+ channel diversity. Annu Rev Neurosci. 1994;17:399–418. doi: 10.1146/annurev.ne.17.030194.002151. [DOI] [PubMed] [Google Scholar]
- Iida H., Nakamura H., Ono T., Okumura M. S., Anraku Y. MID1, a novel Saccharomyces cerevisiae gene encoding a plasma membrane protein, is required for Ca2+ influx and mating. Mol Cell Biol. 1994 Dec;14(12):8259–8271. doi: 10.1128/mcb.14.12.8259. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Iida H., Yagawa Y., Anraku Y. Essential role for induced Ca2+ influx followed by [Ca2+]i rise in maintaining viability of yeast cells late in the mating pheromone response pathway. A study of [Ca2+]i in single Saccharomyces cerevisiae cells with imaging of fura-2. J Biol Chem. 1990 Aug 5;265(22):13391–13399. [PubMed] [Google Scholar]
- Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
- Lapinskas P. J., Lin S. J., Culotta V. C. The role of the Saccharomyces cerevisiae CCC1 gene in the homeostasis of manganese ions. Mol Microbiol. 1996 Aug;21(3):519–528. doi: 10.1111/j.1365-2958.1996.tb02561.x. [DOI] [PubMed] [Google Scholar]
- Loukin S., Kung C. Manganese effectively supports yeast cell-cycle progression in place of calcium. J Cell Biol. 1995 Nov;131(4):1025–1037. doi: 10.1083/jcb.131.4.1025. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mendoza I., Rubio F., Rodriguez-Navarro A., Pardo J. M. The protein phosphatase calcineurin is essential for NaCl tolerance of Saccharomyces cerevisiae. J Biol Chem. 1994 Mar 25;269(12):8792–8796. [PubMed] [Google Scholar]
- Moser M. J., Geiser J. R., Davis T. N. Ca2+-calmodulin promotes survival of pheromone-induced growth arrest by activation of calcineurin and Ca2+-calmodulin-dependent protein kinase. Mol Cell Biol. 1996 Sep;16(9):4824–4831. doi: 10.1128/mcb.16.9.4824. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nakamura T., Liu Y., Hirata D., Namba H., Harada S., Hirokawa T., Miyakawa T. Protein phosphatase type 2B (calcineurin)-mediated, FK506-sensitive regulation of intracellular ions in yeast is an important determinant for adaptation to high salt stress conditions. EMBO J. 1993 Nov;12(11):4063–4071. doi: 10.1002/j.1460-2075.1993.tb06090.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ohya Y., Umemoto N., Tanida I., Ohta A., Iida H., Anraku Y. Calcium-sensitive cls mutants of Saccharomyces cerevisiae showing a Pet- phenotype are ascribable to defects of vacuolar membrane H(+)-ATPase activity. J Biol Chem. 1991 Jul 25;266(21):13971–13977. [PubMed] [Google Scholar]
- Rose M. D., Novick P., Thomas J. H., Botstein D., Fink G. R. A Saccharomyces cerevisiae genomic plasmid bank based on a centromere-containing shuttle vector. Gene. 1987;60(2-3):237–243. doi: 10.1016/0378-1119(87)90232-0. [DOI] [PubMed] [Google Scholar]
- Saimi Y., Martinac B., Preston R. R., Zhou X. L., Sukharev S., Blount P., Kung C. Ion channels of microbes. Soc Gen Physiol Ser. 1994;49:179–195. [PubMed] [Google Scholar]
- Sikorski R. S., Hieter P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics. 1989 May;122(1):19–27. doi: 10.1093/genetics/122.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Snutch T. P., Tomlinson W. J., Leonard J. P., Gilbert M. M. Distinct calcium channels are generated by alternative splicing and are differentially expressed in the mammalian CNS. Neuron. 1991 Jul;7(1):45–57. doi: 10.1016/0896-6273(91)90073-9. [DOI] [PubMed] [Google Scholar]
- Striggow F., Ehrlich B. E. Ligand-gated calcium channels inside and out. Curr Opin Cell Biol. 1996 Aug;8(4):490–495. doi: 10.1016/s0955-0674(96)80025-1. [DOI] [PubMed] [Google Scholar]
- Supek F., Supekova L., Nelson H., Nelson N. A yeast manganese transporter related to the macrophage protein involved in conferring resistance to mycobacteria. Proc Natl Acad Sci U S A. 1996 May 14;93(10):5105–5110. doi: 10.1073/pnas.93.10.5105. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takita Y., Ohya Y., Anraku Y. The CLS2 gene encodes a protein with multiple membrane-spanning domains that is important Ca2+ tolerance in yeast. Mol Gen Genet. 1995 Feb 6;246(3):269–281. doi: 10.1007/BF00288599. [DOI] [PubMed] [Google Scholar]
- Tanabe T., Takeshima H., Mikami A., Flockerzi V., Takahashi H., Kangawa K., Kojima M., Matsuo H., Hirose T., Numa S. Primary structure of the receptor for calcium channel blockers from skeletal muscle. Nature. 1987 Jul 23;328(6128):313–318. doi: 10.1038/328313a0. [DOI] [PubMed] [Google Scholar]
- Withee J. L., Mulholland J., Jeng R., Cyert M. S. An essential role of the yeast pheromone-induced Ca2+ signal is to activate calcineurin. Mol Biol Cell. 1997 Feb;8(2):263–277. doi: 10.1091/mbc.8.2.263. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Woodcock D. M., Crowther P. J., Doherty J., Jefferson S., DeCruz E., Noyer-Weidner M., Smith S. S., Michael M. Z., Graham M. W. Quantitative evaluation of Escherichia coli host strains for tolerance to cytosine methylation in plasmid and phage recombinants. Nucleic Acids Res. 1989 May 11;17(9):3469–3478. doi: 10.1093/nar/17.9.3469. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Youatt J. Calcium and microorganisms. Crit Rev Microbiol. 1993;19(2):83–97. doi: 10.3109/10408419309113524. [DOI] [PubMed] [Google Scholar]