Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1997 Nov;17(11):6448–6458. doi: 10.1128/mcb.17.11.6448

AbdB-like Hox proteins stabilize DNA binding by the Meis1 homeodomain proteins.

W F Shen 1, J C Montgomery 1, S Rozenfeld 1, J J Moskow 1, H J Lawrence 1, A M Buchberg 1, C Largman 1
PMCID: PMC232497  PMID: 9343407

Abstract

Recent studies show that Hox homeodomain proteins from paralog groups 1 to 10 gain DNA binding specificity and affinity through cooperative binding with the divergent homeodomain protein Pbx1. However, the AbdB-like Hox proteins from paralogs 11, 12, and 13 do not interact with Pbx1a, raising the possibility of different protein partners. The Meis1 homeobox gene has 44% identity to Pbx within the homeodomain and was identified as a common site of viral integration in myeloid leukemias arising in BXH-2 mice. These integrations result in constitutive activation of Meis1. Furthermore, the Hoxa-9 gene is frequently activated by viral integration in the same BXH-2 leukemias, suggesting a biological synergy between these two distinct classes of homeodomain proteins in causing malignant transformation. We now show that the Hoxa-9 protein physically interacts with Meis1 proteins by forming heterodimeric binding complexes on a DNA target containing a Meis1 site (TGACAG) and an AbdB-like Hox site (TTTTACGAC). Hox proteins from the other AbdB-like paralogs, Hoxa-10, Hoxa-11, Hoxd-12, and Hoxb-13, also form DNA binding complexes with Meis1b, while Hox proteins from other paralogs do not appear to interact with Meis1 proteins. DNA binding complexes formed by Meis1 with Hox proteins dissociate much more slowly than DNA complexes with Meis1 alone, suggesting that Hox proteins stabilize the interactions of Meis1 proteins with their DNA targets.

Full Text

The Full Text of this article is available as a PDF (957.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Acampora D., D'Esposito M., Faiella A., Pannese M., Migliaccio E., Morelli F., Stornaiuolo A., Nigro V., Simeone A., Boncinelli E. The human HOX gene family. Nucleic Acids Res. 1989 Dec 25;17(24):10385–10402. doi: 10.1093/nar/17.24.10385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bertolino E., Reimund B., Wildt-Perinic D., Clerc R. G. A novel homeobox protein which recognizes a TGT core and functionally interferes with a retinoid-responsive motif. J Biol Chem. 1995 Dec 29;270(52):31178–31188. doi: 10.1074/jbc.270.52.31178. [DOI] [PubMed] [Google Scholar]
  3. Blackwell T. K., Weintraub H. Differences and similarities in DNA-binding preferences of MyoD and E2A protein complexes revealed by binding site selection. Science. 1990 Nov 23;250(4984):1104–1110. doi: 10.1126/science.2174572. [DOI] [PubMed] [Google Scholar]
  4. Borrow J., Shearman A. M., Stanton V. P., Jr, Becher R., Collins T., Williams A. J., Dubé I., Katz F., Kwong Y. L., Morris C. The t(7;11)(p15;p15) translocation in acute myeloid leukaemia fuses the genes for nucleoporin NUP98 and class I homeoprotein HOXA9. Nat Genet. 1996 Feb;12(2):159–167. doi: 10.1038/ng0296-159. [DOI] [PubMed] [Google Scholar]
  5. Catron K. M., Iler N., Abate C. Nucleotides flanking a conserved TAAT core dictate the DNA binding specificity of three murine homeodomain proteins. Mol Cell Biol. 1993 Apr;13(4):2354–2365. doi: 10.1128/mcb.13.4.2354. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chan S. K., Jaffe L., Capovilla M., Botas J., Mann R. S. The DNA binding specificity of Ultrabithorax is modulated by cooperative interactions with extradenticle, another homeoprotein. Cell. 1994 Aug 26;78(4):603–615. doi: 10.1016/0092-8674(94)90525-8. [DOI] [PubMed] [Google Scholar]
  7. Chan S. K., Pöpperl H., Krumlauf R., Mann R. S. An extradenticle-induced conformational change in a HOX protein overcomes an inhibitory function of the conserved hexapeptide motif. EMBO J. 1996 May 15;15(10):2476–2487. [PMC free article] [PubMed] [Google Scholar]
  8. Chang C. P., Brocchieri L., Shen W. F., Largman C., Cleary M. L. Pbx modulation of Hox homeodomain amino-terminal arms establishes different DNA-binding specificities across the Hox locus. Mol Cell Biol. 1996 Apr;16(4):1734–1745. doi: 10.1128/mcb.16.4.1734. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chang C. P., Shen W. F., Rozenfeld S., Lawrence H. J., Largman C., Cleary M. L. Pbx proteins display hexapeptide-dependent cooperative DNA binding with a subset of Hox proteins. Genes Dev. 1995 Mar 15;9(6):663–674. doi: 10.1101/gad.9.6.663. [DOI] [PubMed] [Google Scholar]
  10. Chang C. P., de Vivo I., Cleary M. L. The Hox cooperativity motif of the chimeric oncoprotein E2a-Pbx1 is necessary and sufficient for oncogenesis. Mol Cell Biol. 1997 Jan;17(1):81–88. doi: 10.1128/mcb.17.1.81. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ekker S. C., Jackson D. G., von Kessler D. P., Sun B. I., Young K. E., Beachy P. A. The degree of variation in DNA sequence recognition among four Drosophila homeotic proteins. EMBO J. 1994 Aug 1;13(15):3551–3560. doi: 10.1002/j.1460-2075.1994.tb06662.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gould A., Morrison A., Sproat G., White R. A., Krumlauf R. Positive cross-regulation and enhancer sharing: two mechanisms for specifying overlapping Hox expression patterns. Genes Dev. 1997 Apr 1;11(7):900–913. doi: 10.1101/gad.11.7.900. [DOI] [PubMed] [Google Scholar]
  13. Graba Y., Aragnol D., Pradel J. Drosophila Hox complex downstream targets and the function of homeotic genes. Bioessays. 1997 May;19(5):379–388. doi: 10.1002/bies.950190505. [DOI] [PubMed] [Google Scholar]
  14. Hsieh-Li H. M., Witte D. P., Weinstein M., Branford W., Li H., Small K., Potter S. S. Hoxa 11 structure, extensive antisense transcription, and function in male and female fertility. Development. 1995 May;121(5):1373–1385. doi: 10.1242/dev.121.5.1373. [DOI] [PubMed] [Google Scholar]
  15. Izpisúa-Belmonte J. C., Falkenstein H., Dollé P., Renucci A., Duboule D. Murine genes related to the Drosophila AbdB homeotic genes are sequentially expressed during development of the posterior part of the body. EMBO J. 1991 Aug;10(8):2279–2289. doi: 10.1002/j.1460-2075.1991.tb07764.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Jones F. S., Prediger E. A., Bittner D. A., De Robertis E. M., Edelman G. M. Cell adhesion molecules as targets for Hox genes: neural cell adhesion molecule promoter activity is modulated by cotransfection with Hox-2.5 and -2.4. Proc Natl Acad Sci U S A. 1992 Mar 15;89(6):2086–2090. doi: 10.1073/pnas.89.6.2086. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kamps M. P., Look A. T., Baltimore D. The human t(1;19) translocation in pre-B ALL produces multiple nuclear E2A-Pbx1 fusion proteins with differing transforming potentials. Genes Dev. 1991 Mar;5(3):358–368. doi: 10.1101/gad.5.3.358. [DOI] [PubMed] [Google Scholar]
  18. Kamps M. P., Murre C., Sun X. H., Baltimore D. A new homeobox gene contributes the DNA binding domain of the t(1;19) translocation protein in pre-B ALL. Cell. 1990 Feb 23;60(4):547–555. doi: 10.1016/0092-8674(90)90658-2. [DOI] [PubMed] [Google Scholar]
  19. Kessel M., Schulze F., Fibi M., Gruss P. Primary structure and nuclear localization of a murine homeodomain protein. Proc Natl Acad Sci U S A. 1987 Aug;84(15):5306–5310. doi: 10.1073/pnas.84.15.5306. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kongsuwan K., Allen J., Adams J. M. Expression of Hox-2.4 homeobox gene directed by proviral insertion in a myeloid leukemia. Nucleic Acids Res. 1989 Mar 11;17(5):1881–1892. doi: 10.1093/nar/17.5.1881. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kongsuwan K., Webb E., Housiaux P., Adams J. M. Expression of multiple homeobox genes within diverse mammalian haemopoietic lineages. EMBO J. 1988 Jul;7(7):2131–2138. doi: 10.1002/j.1460-2075.1988.tb03052.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lawrence H. J., Largman C. Homeobox genes in normal hematopoiesis and leukemia. Blood. 1992 Nov 15;80(10):2445–2453. [PubMed] [Google Scholar]
  23. Lawrence H. J., Sauvageau G., Humphries R. K., Largman C. The role of HOX homeobox genes in normal and leukemic hematopoiesis. Stem Cells. 1996 May;14(3):281–291. doi: 10.1002/stem.140281. [DOI] [PubMed] [Google Scholar]
  24. Levine M., Hoey T. Homeobox proteins as sequence-specific transcription factors. Cell. 1988 Nov 18;55(4):537–540. doi: 10.1016/0092-8674(88)90209-7. [DOI] [PubMed] [Google Scholar]
  25. Lowney P., Corral J., Detmer K., LeBeau M. M., Deaven L., Lawrence H. J., Largman C. A human Hox 1 homeobox gene exhibits myeloid-specific expression of alternative transcripts in human hematopoietic cells. Nucleic Acids Res. 1991 Jun 25;19(12):3443–3449. doi: 10.1093/nar/19.12.3443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Lu Q., Kamps M. P. Structural determinants within Pbx1 that mediate cooperative DNA binding with pentapeptide-containing Hox proteins: proposal for a model of a Pbx1-Hox-DNA complex. Mol Cell Biol. 1996 Apr;16(4):1632–1640. doi: 10.1128/mcb.16.4.1632. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Lu Q., Knoepfler P. S., Scheele J., Wright D. D., Kamps M. P. Both Pbx1 and E2A-Pbx1 bind the DNA motif ATCAATCAA cooperatively with the products of multiple murine Hox genes, some of which are themselves oncogenes. Mol Cell Biol. 1995 Jul;15(7):3786–3795. doi: 10.1128/mcb.15.7.3786. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Mak A., Johnson A. D. The carboxy-terminal tail of the homeo domain protein alpha 2 is required for function with a second homeo domain protein. Genes Dev. 1993 Oct;7(10):1862–1870. doi: 10.1101/gad.7.10.1862. [DOI] [PubMed] [Google Scholar]
  29. Malicki J., Bogarad L. D., Martin M. M., Ruddle F. H., McGinnis W. Functional analysis of the mouse homeobox gene HoxB9 in Drosophila development. Mech Dev. 1993 Aug;42(3):139–150. doi: 10.1016/0925-4773(93)90003-g. [DOI] [PubMed] [Google Scholar]
  30. McGinnis W., Krumlauf R. Homeobox genes and axial patterning. Cell. 1992 Jan 24;68(2):283–302. doi: 10.1016/0092-8674(92)90471-n. [DOI] [PubMed] [Google Scholar]
  31. Monica K., Galili N., Nourse J., Saltman D., Cleary M. L. PBX2 and PBX3, new homeobox genes with extensive homology to the human proto-oncogene PBX1. Mol Cell Biol. 1991 Dec;11(12):6149–6157. doi: 10.1128/mcb.11.12.6149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Monica K., LeBrun D. P., Dedera D. A., Brown R., Cleary M. L. Transformation properties of the E2a-Pbx1 chimeric oncoprotein: fusion with E2a is essential, but the Pbx1 homeodomain is dispensable. Mol Cell Biol. 1994 Dec;14(12):8304–8314. doi: 10.1128/mcb.14.12.8304. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Moskow J. J., Bullrich F., Huebner K., Daar I. O., Buchberg A. M. Meis1, a PBX1-related homeobox gene involved in myeloid leukemia in BXH-2 mice. Mol Cell Biol. 1995 Oct;15(10):5434–5443. doi: 10.1128/mcb.15.10.5434. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Nakamura T., Jenkins N. A., Copeland N. G. Identification of a new family of Pbx-related homeobox genes. Oncogene. 1996 Nov 21;13(10):2235–2242. [PubMed] [Google Scholar]
  35. Nakamura T., Largaespada D. A., Lee M. P., Johnson L. A., Ohyashiki K., Toyama K., Chen S. J., Willman C. L., Chen I. M., Feinberg A. P. Fusion of the nucleoporin gene NUP98 to HOXA9 by the chromosome translocation t(7;11)(p15;p15) in human myeloid leukaemia. Nat Genet. 1996 Feb;12(2):154–158. doi: 10.1038/ng0296-154. [DOI] [PubMed] [Google Scholar]
  36. Nakamura T., Largaespada D. A., Shaughnessy J. D., Jr, Jenkins N. A., Copeland N. G. Cooperative activation of Hoxa and Pbx1-related genes in murine myeloid leukaemias. Nat Genet. 1996 Feb;12(2):149–153. doi: 10.1038/ng0296-149. [DOI] [PubMed] [Google Scholar]
  37. Neuteboom S. T., Peltenburg L. T., van Dijk M. A., Murre C. The hexapeptide LFPWMR in Hoxb-8 is required for cooperative DNA binding with Pbx1 and Pbx2 proteins. Proc Natl Acad Sci U S A. 1995 Sep 26;92(20):9166–9170. doi: 10.1073/pnas.92.20.9166. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Nourse J., Mellentin J. D., Galili N., Wilkinson J., Stanbridge E., Smith S. D., Cleary M. L. Chromosomal translocation t(1;19) results in synthesis of a homeobox fusion mRNA that codes for a potential chimeric transcription factor. Cell. 1990 Feb 23;60(4):535–545. doi: 10.1016/0092-8674(90)90657-z. [DOI] [PubMed] [Google Scholar]
  39. Peltenburg L. T., Murre C. Engrailed and Hox homeodomain proteins contain a related Pbx interaction motif that recognizes a common structure present in Pbx. EMBO J. 1996 Jul 1;15(13):3385–3393. [PMC free article] [PubMed] [Google Scholar]
  40. Perkins A., Kongsuwan K., Visvader J., Adams J. M., Cory S. Homeobox gene expression plus autocrine growth factor production elicits myeloid leukemia. Proc Natl Acad Sci U S A. 1990 Nov;87(21):8398–8402. doi: 10.1073/pnas.87.21.8398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Peverali F. A., D'Esposito M., Acampora D., Bunone G., Negri M., Faiella A., Stornaiuolo A., Pannese M., Migliaccio E., Simeone A. Expression of HOX homeogenes in human neuroblastoma cell culture lines. Differentiation. 1990 Oct;45(1):61–69. doi: 10.1111/j.1432-0436.1990.tb00458.x. [DOI] [PubMed] [Google Scholar]
  42. Phelan M. L., Rambaldi I., Featherstone M. S. Cooperative interactions between HOX and PBX proteins mediated by a conserved peptide motif. Mol Cell Biol. 1995 Aug;15(8):3989–3997. doi: 10.1128/mcb.15.8.3989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Pöpperl H., Bienz M., Studer M., Chan S. K., Aparicio S., Brenner S., Mann R. S., Krumlauf R. Segmental expression of Hoxb-1 is controlled by a highly conserved autoregulatory loop dependent upon exd/pbx. Cell. 1995 Jun 30;81(7):1031–1042. doi: 10.1016/s0092-8674(05)80008-x. [DOI] [PubMed] [Google Scholar]
  44. Rubin M. R., King W., Toth L. E., Sawczuk I. S., Levine M. S., D'Eustachio P., Nguyen-Huu M. C. Murine Hox-1.7 homeo-box gene: cloning, chromosomal location, and expression. Mol Cell Biol. 1987 Oct;7(10):3836–3841. doi: 10.1128/mcb.7.10.3836. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Shen W. F., Chang C. P., Rozenfeld S., Sauvageau G., Humphries R. K., Lu M., Lawrence H. J., Cleary M. L., Largman C. Hox homeodomain proteins exhibit selective complex stabilities with Pbx and DNA. Nucleic Acids Res. 1996 Mar 1;24(5):898–906. doi: 10.1093/nar/24.5.898. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Shen W. F., Largman C., Lowney P., Corral J. C., Detmer K., Hauser C. A., Simonitch T. A., Hack F. M., Lawrence H. J. Lineage-restricted expression of homeobox-containing genes in human hematopoietic cell lines. Proc Natl Acad Sci U S A. 1989 Nov;86(21):8536–8540. doi: 10.1073/pnas.86.21.8536. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Shen W. F., Rozenfeld S., Lawrence H. J., Largman C. The Abd-B-like Hox homeodomain proteins can be subdivided by the ability to form complexes with Pbx1a on a novel DNA target. J Biol Chem. 1997 Mar 28;272(13):8198–8206. doi: 10.1074/jbc.272.13.8198. [DOI] [PubMed] [Google Scholar]
  48. Steelman S., Moskow J. J., Muzynski K., North C., Druck T., Montgomery J. C., Huebner K., Daar I. O., Buchberg A. M. Identification of a conserved family of Meis1-related homeobox genes. Genome Res. 1997 Feb;7(2):142–156. doi: 10.1101/gr.7.2.142. [DOI] [PubMed] [Google Scholar]
  49. Thorsteinsdottir U., Sauvageau G., Hough M. R., Dragowska W., Lansdorp P. M., Lawrence H. J., Largman C., Humphries R. K. Overexpression of HOXA10 in murine hematopoietic cells perturbs both myeloid and lymphoid differentiation and leads to acute myeloid leukemia. Mol Cell Biol. 1997 Jan;17(1):495–505. doi: 10.1128/mcb.17.1.495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Xue D., Tu Y., Chalfie M. Cooperative interactions between the Caenorhabditis elegans homeoproteins UNC-86 and MEC-3. Science. 1993 Sep 3;261(5126):1324–1328. doi: 10.1126/science.8103239. [DOI] [PubMed] [Google Scholar]
  51. Zappavigna V., Sartori D., Mavilio F. Specificity of HOX protein function depends on DNA-protein and protein-protein interactions, both mediated by the homeo domain. Genes Dev. 1994 Mar 15;8(6):732–744. doi: 10.1101/gad.8.6.732. [DOI] [PubMed] [Google Scholar]
  52. van Dijk M. A., Murre C. extradenticle raises the DNA binding specificity of homeotic selector gene products. Cell. 1994 Aug 26;78(4):617–624. doi: 10.1016/0092-8674(94)90526-6. [DOI] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES