Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1997 Nov;17(11):6546–6554. doi: 10.1128/mcb.17.11.6546

Proposed mechanism for the stabilization of nuclear receptor DNA binding via protein dimerization.

G Jiang 1, U Lee 1, F M Sladek 1
PMCID: PMC232508  PMID: 9343418

Abstract

Hepatocyte nuclear factor 4 (HNF-4) defines a new subgroup of nuclear receptors that exist in solution and bind DNA exclusively as homodimers. We recently showed that the putative ligand binding domain (LBD) of HNF-4 is responsible for dimerization in solution and prevents heterodimerization with other receptors. In this report, the role of the LBD in DNA binding by HNF-4 is further investigated by using electrophoretic mobility shift analysis. A comparison of constructs containing either the DNA binding domain (DBD) alone or the DBD plus the LBD of HNF-4 showed that dimerization via the DBD was sufficient to provide nearly the full DNA binding affinity of the full-length HNF-4. In contrast, dimerization via the DBD was not sufficient to produce a stable protein-DNA complex, whereas dimerization via the LBD increased the half-life of the complex by at least 100-fold. Circular permutation analysis showed that full-length HNF-4 bent DNA by approximately 80 degrees while the DBD bent DNA by only 24 degrees. Nonetheless, analysis of other constructs indicated that the increase in stability afforded by the LBD could be explained only partially by an increased ability to bend DNA. Coimmunoprecipitation studies, on the other hand, showed that dimerization via the LBD produced a protein-protein complex that was much more stable than the corresponding protein-DNA complex. These results led us to propose a model in which dimerization via the LBD stabilizes the receptor on DNA by converting an energetically favorable two-step dissociation event into an energetically unfavorable single-step event. Implications of this one-step model for other nuclear receptors are discussed.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allan G. F., Tsai S. Y., Tsai M. J., O'Malley B. W. Ligand-dependent conformational changes in the progesterone receptor are necessary for events that follow DNA binding. Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):11750–11754. doi: 10.1073/pnas.89.24.11750. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beato M., Herrlich P., Schütz G. Steroid hormone receptors: many actors in search of a plot. Cell. 1995 Dec 15;83(6):851–857. doi: 10.1016/0092-8674(95)90201-5. [DOI] [PubMed] [Google Scholar]
  3. Birnbaumer L. Receptor-to-effector signaling through G proteins: roles for beta gamma dimers as well as alpha subunits. Cell. 1992 Dec 24;71(7):1069–1072. doi: 10.1016/s0092-8674(05)80056-x. [DOI] [PubMed] [Google Scholar]
  4. Chakravarti D., LaMorte V. J., Nelson M. C., Nakajima T., Schulman I. G., Juguilon H., Montminy M., Evans R. M. Role of CBP/P300 in nuclear receptor signalling. Nature. 1996 Sep 5;383(6595):99–103. doi: 10.1038/383099a0. [DOI] [PubMed] [Google Scholar]
  5. Chen W. S., Manova K., Weinstein D. C., Duncan S. A., Plump A. S., Prezioso V. R., Bachvarova R. F., Darnell J. E., Jr Disruption of the HNF-4 gene, expressed in visceral endoderm, leads to cell death in embryonic ectoderm and impaired gastrulation of mouse embryos. Genes Dev. 1994 Oct 15;8(20):2466–2477. doi: 10.1101/gad.8.20.2466. [DOI] [PubMed] [Google Scholar]
  6. Cheskis B., Freedman L. P. Ligand modulates the conversion of DNA-bound vitamin D3 receptor (VDR) homodimers into VDR-retinoid X receptor heterodimers. Mol Cell Biol. 1994 May;14(5):3329–3338. doi: 10.1128/mcb.14.5.3329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cheskis B., Freedman L. P. Modulation of nuclear receptor interactions by ligands: kinetic analysis using surface plasmon resonance. Biochemistry. 1996 Mar 12;35(10):3309–3318. doi: 10.1021/bi952283r. [DOI] [PubMed] [Google Scholar]
  8. Cheskis B., Lemon B. D., Uskokovic M., Lomedico P. T., Freedman L. P. Vitamin D3-retinoid X receptor dimerization, DNA binding, and transactivation are differentially affected by analogs of 1,25-dihydroxyvitamin D3. Mol Endocrinol. 1995 Dec;9(12):1814–1824. doi: 10.1210/mend.9.12.8614417. [DOI] [PubMed] [Google Scholar]
  9. Drewes T., Senkel S., Holewa B., Ryffel G. U. Human hepatocyte nuclear factor 4 isoforms are encoded by distinct and differentially expressed genes. Mol Cell Biol. 1996 Mar;16(3):925–931. doi: 10.1128/mcb.16.3.925. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Drouin J., Sun Y. L., Tremblay S., Lavender P., Schmidt T. J., de Léan A., Nemer M. Homodimer formation is rate-limiting for high affinity DNA binding by glucocorticoid receptor. Mol Endocrinol. 1992 Aug;6(8):1299–1309. doi: 10.1210/mend.6.8.1406707. [DOI] [PubMed] [Google Scholar]
  11. Duncan S. A., Manova K., Chen W. S., Hoodless P., Weinstein D. C., Bachvarova R. F., Darnell J. E., Jr Expression of transcription factor HNF-4 in the extraembryonic endoderm, gut, and nephrogenic tissue of the developing mouse embryo: HNF-4 is a marker for primary endoderm in the implanting blastocyst. Proc Natl Acad Sci U S A. 1994 Aug 2;91(16):7598–7602. doi: 10.1073/pnas.91.16.7598. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Freedman L. P., Luisi B. F. On the mechanism of DNA binding by nuclear hormone receptors: a structural and functional perspective. J Cell Biochem. 1993 Feb;51(2):140–150. doi: 10.1002/jcb.240510205. [DOI] [PubMed] [Google Scholar]
  13. Giese K., Grosschedl R. LEF-1 contains an activation domain that stimulates transcription only in a specific context of factor-binding sites. EMBO J. 1993 Dec;12(12):4667–4676. doi: 10.1002/j.1460-2075.1993.tb06155.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Glass C. K. Differential recognition of target genes by nuclear receptor monomers, dimers, and heterodimers. Endocr Rev. 1994 Jun;15(3):391–407. doi: 10.1210/edrv-15-3-391. [DOI] [PubMed] [Google Scholar]
  15. Gronemeyer H., Moras D. Nuclear receptors. How to finger DNA. Nature. 1995 May 18;375(6528):190–191. doi: 10.1038/375190a0. [DOI] [PubMed] [Google Scholar]
  16. Harding H. P., Lazar M. A. The monomer-binding orphan receptor Rev-Erb represses transcription as a dimer on a novel direct repeat. Mol Cell Biol. 1995 Sep;15(9):4791–4802. doi: 10.1128/mcb.15.9.4791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Harrington R. E., Winicov I. New concepts in protein-DNA recognition: sequence-directed DNA bending and flexibility. Prog Nucleic Acid Res Mol Biol. 1994;47:195–270. doi: 10.1016/s0079-6603(08)60253-6. [DOI] [PubMed] [Google Scholar]
  18. Heldin C. H. Dimerization of cell surface receptors in signal transduction. Cell. 1995 Jan 27;80(2):213–223. doi: 10.1016/0092-8674(95)90404-2. [DOI] [PubMed] [Google Scholar]
  19. Heldin C. H., Ostman A. Ligand-induced dimerization of growth factor receptors: variations on the theme. Cytokine Growth Factor Rev. 1996 Jun;7(1):3–10. doi: 10.1016/1359-6101(96)00002-0. [DOI] [PubMed] [Google Scholar]
  20. Hong H., Kohli K., Trivedi A., Johnson D. L., Stallcup M. R. GRIP1, a novel mouse protein that serves as a transcriptional coactivator in yeast for the hormone binding domains of steroid receptors. Proc Natl Acad Sci U S A. 1996 May 14;93(10):4948–4952. doi: 10.1073/pnas.93.10.4948. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Härd T., Dahlman K., Carlstedt-Duke J., Gustafsson J. A., Rigler R. Cooperativity and specificity in the interactions between DNA and the glucocorticoid receptor DNA-binding domain. Biochemistry. 1990 Jun 5;29(22):5358–5364. doi: 10.1021/bi00474a022. [DOI] [PubMed] [Google Scholar]
  22. Jiang G., Nepomuceno L., Hopkins K., Sladek F. M. Exclusive homodimerization of the orphan receptor hepatocyte nuclear factor 4 defines a new subclass of nuclear receptors. Mol Cell Biol. 1995 Sep;15(9):5131–5143. doi: 10.1128/mcb.15.9.5131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Jiang G., Nepomuceno L., Yang Q., Sladek F. M. Serine/threonine phosphorylation of orphan receptor hepatocyte nuclear factor 4. Arch Biochem Biophys. 1997 Apr 1;340(1):1–9. doi: 10.1006/abbi.1997.9914. [DOI] [PubMed] [Google Scholar]
  24. Jiang G., Sladek F. M. The DNA binding domain of hepatocyte nuclear factor 4 mediates cooperative, specific binding to DNA and heterodimerization with the retinoid X receptor alpha. J Biol Chem. 1997 Jan 10;272(2):1218–1225. doi: 10.1074/jbc.272.2.1218. [DOI] [PubMed] [Google Scholar]
  25. Jones S., Thornton J. M. Protein-protein interactions: a review of protein dimer structures. Prog Biophys Mol Biol. 1995;63(1):31–65. doi: 10.1016/0079-6107(94)00008-w. [DOI] [PubMed] [Google Scholar]
  26. Kamei Y., Xu L., Heinzel T., Torchia J., Kurokawa R., Gloss B., Lin S. C., Heyman R. A., Rose D. W., Glass C. K. A CBP integrator complex mediates transcriptional activation and AP-1 inhibition by nuclear receptors. Cell. 1996 May 3;85(3):403–414. doi: 10.1016/s0092-8674(00)81118-6. [DOI] [PubMed] [Google Scholar]
  27. King I. N., de Soyza T., Catanzaro D. F., Lavin T. N. Thyroid hormone receptor-induced bending of specific DNA sequences is modified by an accessory factor. J Biol Chem. 1993 Jan 5;268(1):495–501. [PubMed] [Google Scholar]
  28. Kingston R. E., Green M. R. Modeling eukaryotic transcriptional activation. Curr Biol. 1994 Apr 1;4(4):325–332. doi: 10.1016/s0960-9822(00)00071-3. [DOI] [PubMed] [Google Scholar]
  29. Kliewer S. A., Umesono K., Mangelsdorf D. J., Evans R. M. Retinoid X receptor interacts with nuclear receptors in retinoic acid, thyroid hormone and vitamin D3 signalling. Nature. 1992 Jan 30;355(6359):446–449. doi: 10.1038/355446a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Kurokawa R., Yu V. C., När A., Kyakumoto S., Han Z., Silverman S., Rosenfeld M. G., Glass C. K. Differential orientations of the DNA-binding domain and carboxy-terminal dimerization interface regulate binding site selection by nuclear receptor heterodimers. Genes Dev. 1993 Jul;7(7B):1423–1435. doi: 10.1101/gad.7.7b.1423. [DOI] [PubMed] [Google Scholar]
  31. Lee J. W., Gulick T., Moore D. D. Thyroid hormone receptor dimerization function maps to a conserved subregion of the ligand binding domain. Mol Endocrinol. 1992 Nov;6(11):1867–1873. doi: 10.1210/mend.6.11.1480176. [DOI] [PubMed] [Google Scholar]
  32. Lee M. S., Kliewer S. A., Provencal J., Wright P. E., Evans R. M. Structure of the retinoid X receptor alpha DNA binding domain: a helix required for homodimeric DNA binding. Science. 1993 May 21;260(5111):1117–1121. doi: 10.1126/science.8388124. [DOI] [PubMed] [Google Scholar]
  33. Lees J. A., Fawell S. E., White R., Parker M. G. A 22-amino-acid peptide restores DNA-binding activity to dimerization-defective mutants of the estrogen receptor. Mol Cell Biol. 1990 Oct;10(10):5529–5531. doi: 10.1128/mcb.10.10.5529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Leidig F., Shepard A. R., Zhang W. G., Stelter A., Cattini P. A., Baxter J. D., Eberhardt N. L. Thyroid hormone responsiveness in human growth hormone-related genes. Possible correlation with receptor-induced DNA conformational changes. J Biol Chem. 1992 Jan 15;267(2):913–921. [PubMed] [Google Scholar]
  35. Leng X., Tsai S. Y., O'Malley B. W., Tsai M. J. Ligand-dependent conformational changes in thyroid hormone and retinoic acid receptors are potentially enhanced by heterodimerization with retinoic X receptor. J Steroid Biochem Mol Biol. 1993 Dec;46(6):643–661. doi: 10.1016/0960-0760(93)90306-h. [DOI] [PubMed] [Google Scholar]
  36. Lewis D. F., Parker M. G., King R. J. Molecular modelling of the human estrogen receptor and ligand interactions based on site-directed mutagenesis and amino acid sequence homology. J Steroid Biochem Mol Biol. 1995 Jan;52(1):55–65. doi: 10.1016/0960-0760(94)00151-b. [DOI] [PubMed] [Google Scholar]
  37. Lu X. P., Eberhardt N. L., Pfahl M. DNA bending by retinoid X receptor-containing retinoid and thyroid hormone receptor complexes. Mol Cell Biol. 1993 Oct;13(10):6509–6519. doi: 10.1128/mcb.13.10.6509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Luisi B. F., Xu W. X., Otwinowski Z., Freedman L. P., Yamamoto K. R., Sigler P. B. Crystallographic analysis of the interaction of the glucocorticoid receptor with DNA. Nature. 1991 Aug 8;352(6335):497–505. doi: 10.1038/352497a0. [DOI] [PubMed] [Google Scholar]
  39. Mangelsdorf D. J., Evans R. M. The RXR heterodimers and orphan receptors. Cell. 1995 Dec 15;83(6):841–850. doi: 10.1016/0092-8674(95)90200-7. [DOI] [PubMed] [Google Scholar]
  40. Mangelsdorf D. J., Thummel C., Beato M., Herrlich P., Schütz G., Umesono K., Blumberg B., Kastner P., Mark M., Chambon P. The nuclear receptor superfamily: the second decade. Cell. 1995 Dec 15;83(6):835–839. doi: 10.1016/0092-8674(95)90199-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. McBroom L. D., Flock G., Giguère V. The nonconserved hinge region and distinct amino-terminal domains of the ROR alpha orphan nuclear receptor isoforms are required for proper DNA bending and ROR alpha-DNA interactions. Mol Cell Biol. 1995 Feb;15(2):796–808. doi: 10.1128/mcb.15.2.796. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Nardulli A. M., Greene G. L., Shapiro D. J. Human estrogen receptor bound to an estrogen response element bends DNA. Mol Endocrinol. 1993 Mar;7(3):331–340. doi: 10.1210/mend.7.3.8483477. [DOI] [PubMed] [Google Scholar]
  43. Nardulli A. M., Grobner C., Cotter D. Estrogen receptor-induced DNA bending: orientation of the bend and replacement of an estrogen response element with an intrinsic DNA bending sequence. Mol Endocrinol. 1995 Aug;9(8):1064–1076. doi: 10.1210/mend.9.8.7476980. [DOI] [PubMed] [Google Scholar]
  44. Nardulli A. M., Shapiro D. J. Binding of the estrogen receptor DNA-binding domain to the estrogen response element induces DNA bending. Mol Cell Biol. 1992 May;12(5):2037–2042. doi: 10.1128/mcb.12.5.2037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Oltvai Z. N., Korsmeyer S. J. Checkpoints of dueling dimers foil death wishes. Cell. 1994 Oct 21;79(2):189–192. doi: 10.1016/0092-8674(94)90188-0. [DOI] [PubMed] [Google Scholar]
  46. Oñate S. A., Tsai S. Y., Tsai M. J., O'Malley B. W. Sequence and characterization of a coactivator for the steroid hormone receptor superfamily. Science. 1995 Nov 24;270(5240):1354–1357. doi: 10.1126/science.270.5240.1354. [DOI] [PubMed] [Google Scholar]
  47. Pfahl M. Vertebrate receptors: molecular biology, dimerization and response elements. Semin Cell Biol. 1994 Apr;5(2):95–103. doi: 10.1006/scel.1994.1013. [DOI] [PubMed] [Google Scholar]
  48. Rastinejad F., Perlmann T., Evans R. M., Sigler P. B. Structural determinants of nuclear receptor assembly on DNA direct repeats. Nature. 1995 May 18;375(6528):203–211. doi: 10.1038/375203a0. [DOI] [PubMed] [Google Scholar]
  49. Schepartz A. Nonspecific DNA bending and the specificity of protein-DNA interactions. Science. 1995 Aug 18;269(5226):989–990. doi: 10.1126/science.7638626. [DOI] [PubMed] [Google Scholar]
  50. Schwabe J. W., Chapman L., Finch J. T., Rhodes D. The crystal structure of the estrogen receptor DNA-binding domain bound to DNA: how receptors discriminate between their response elements. Cell. 1993 Nov 5;75(3):567–578. doi: 10.1016/0092-8674(93)90390-c. [DOI] [PubMed] [Google Scholar]
  51. Schwabe J. W., Neuhaus D., Rhodes D. Solution structure of the DNA-binding domain of the oestrogen receptor. Nature. 1990 Nov 29;348(6300):458–461. doi: 10.1038/348458a0. [DOI] [PubMed] [Google Scholar]
  52. Shulemovich K., Dimaculangan D. D., Katz D., Lazar M. A. DNA bending by thyroid hormone receptor: influence of half-site spacing and RXR. Nucleic Acids Res. 1995 Mar 11;23(5):811–818. doi: 10.1093/nar/23.5.811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Sladek F. M., Zhong W. M., Lai E., Darnell J. E., Jr Liver-enriched transcription factor HNF-4 is a novel member of the steroid hormone receptor superfamily. Genes Dev. 1990 Dec;4(12B):2353–2365. doi: 10.1101/gad.4.12b.2353. [DOI] [PubMed] [Google Scholar]
  54. Stock J. Receptor signaling: dimerization and beyond. Curr Biol. 1996 Jul 1;6(7):825–827. doi: 10.1016/s0960-9822(02)00605-x. [DOI] [PubMed] [Google Scholar]
  55. Thompson J. F., Landy A. Empirical estimation of protein-induced DNA bending angles: applications to lambda site-specific recombination complexes. Nucleic Acids Res. 1988 Oct 25;16(20):9687–9705. doi: 10.1093/nar/16.20.9687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Toney J. H., Wu L., Summerfield A. E., Sanyal G., Forman B. M., Zhu J., Samuels H. H. Conformational changes in chicken thyroid hormone receptor alpha 1 induced by binding to ligand or to DNA. Biochemistry. 1993 Jan 12;32(1):2–6. doi: 10.1021/bi00052a001. [DOI] [PubMed] [Google Scholar]
  57. Yamagata K., Furuta H., Oda N., Kaisaki P. J., Menzel S., Cox N. J., Fajans S. S., Signorini S., Stoffel M., Bell G. I. Mutations in the hepatocyte nuclear factor-4alpha gene in maturity-onset diabetes of the young (MODY1) Nature. 1996 Dec 5;384(6608):458–460. doi: 10.1038/384458a0. [DOI] [PubMed] [Google Scholar]
  58. Yen P. M., Brubaker J. H., Apriletti J. W., Baxter J. D., Chin W. W. Roles of 3,5,3'-triiodothyronine and deoxyribonucleic acid binding on thyroid hormone receptor complex formation. Endocrinology. 1994 Mar;134(3):1075–1081. doi: 10.1210/endo.134.3.8119145. [DOI] [PubMed] [Google Scholar]
  59. Zamir I., Zhang J., Lazar M. A. Stoichiometric and steric principles governing repression by nuclear hormone receptors. Genes Dev. 1997 Apr 1;11(7):835–846. doi: 10.1101/gad.11.7.835. [DOI] [PubMed] [Google Scholar]
  60. Zeng Z., Allan G. F., Thaller C., Cooney A. J., Tsai S. Y., O'Malley B. W., Tsai M. J. Detection of potential ligands for nuclear receptors in cellular extracts. Endocrinology. 1994 Jul;135(1):248–252. doi: 10.1210/endo.135.1.8013359. [DOI] [PubMed] [Google Scholar]
  61. Zilliacus J., Wright A. P., Carlstedt-Duke J., Gustafsson J. A. Structural determinants of DNA-binding specificity by steroid receptors. Mol Endocrinol. 1995 Apr;9(4):389–400. doi: 10.1210/mend.9.4.7659083. [DOI] [PubMed] [Google Scholar]
  62. van der Vliet P. C., Verrijzer C. P. Bending of DNA by transcription factors. Bioessays. 1993 Jan;15(1):25–32. doi: 10.1002/bies.950150105. [DOI] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES