Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1997 Nov;17(11):6598–6608. doi: 10.1128/mcb.17.11.6598

Inhibition of trans-retinoic acid-resistant human breast cancer cell growth by retinoid X receptor-selective retinoids.

Q Wu 1, M I Dawson 1, Y Zheng 1, P D Hobbs 1, A Agadir 1, L Jong 1, Y Li 1, R Liu 1, B Lin 1, X K Zhang 1
PMCID: PMC232513  PMID: 9343423

Abstract

All-trans-retinoic acid (trans-RA) and other retinoids exert anticancer effects through two types of retinoid receptors, the RA receptors (RARs) and retinoid X receptors (RXRs). Previous studies demonstrated that the growth-inhibitory effects of trans-RA and related retinoids are impaired in certain estrogen-independent breast cancer cell lines due to their lower levels of RAR alpha and RARbeta. In this study, we evaluated several synthetic retinoids for their ability to induce growth inhibition and apoptosis in both trans-RA-sensitive and trans-RA-resistant breast cancer cell lines. Our results demonstrate that RXR-selective retinoids, particularly in combination with RAR-selective retinoids, could significantly induce RARbeta and inhibit the growth and induce the apoptosis of trans-RA-resistant, RAR alpha-deficient MDA-MB-231 cells but had low activity against trans-RA-sensitive ZR-75-1 cells that express high levels of RAR alpha. Using gel retardation and transient transfection assays, we found that the effects of RXR-selective retinoids on MDA-MB-231 cells were most likely mediated by RXR-nur77 heterodimers that bound to the RA response element in the RARbeta promoter and activated the RARbeta promoter in response to RXR-selective retinoids. In contrast, growth inhibition by RAR-selective retinoids in trans-RA-sensitive, RAR alpha-expressing cells most probably occurred through RXR-RAR alpha heterodimers that also bound to and activated the RARbeta promoter. In MDA-MB-231 clones stably expressing RAR alpha, both RARbeta induction and growth inhibition by RXR-selective retinoids were suppressed, while the effects of RAR-selective retinoids were enhanced. Together, our results demonstrate that activation of RXR can inhibit the growth of trans-RA-resistant MDA-MB-231 breast cancer cells and suggest that low cellular RAR alpha may regulate the signaling switch from RAR-mediated to RXR-mediated growth inhibition in breast cancer cells.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bartsch D., Boye B., Baust C., zur Hausen H., Schwarz E. Retinoic acid-mediated repression of human papillomavirus 18 transcription and different ligand regulation of the retinoic acid receptor beta gene in non-tumorigenic and tumorigenic HeLa hybrid cells. EMBO J. 1992 Jun;11(6):2283–2291. doi: 10.1002/j.1460-2075.1992.tb05287.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Boccardo F., Canobbio L., Resasco M., Decensi A. U., Pastorino G., Brema F. Phase II study of tamoxifen and high-dose retinyl acetate in patients with advanced breast cancer. J Cancer Res Clin Oncol. 1990;116(5):503–506. doi: 10.1007/BF01613002. [DOI] [PubMed] [Google Scholar]
  3. Cassidy J., Lippman M., Lacroix A., Peck G. Phase II trial of 13-cis-retinoic acid in metastatic breast cancer. Eur J Cancer Clin Oncol. 1982 Oct;18(10):925–928. doi: 10.1016/0277-5379(82)90239-5. [DOI] [PubMed] [Google Scholar]
  4. Chen J. Y., Clifford J., Zusi C., Starrett J., Tortolani D., Ostrowski J., Reczek P. R., Chambon P., Gronemeyer H. Two distinct actions of retinoid-receptor ligands. Nature. 1996 Aug 29;382(6594):819–822. doi: 10.1038/382819a0. [DOI] [PubMed] [Google Scholar]
  5. Clifford J. L., Petkovich M., Chambon P., Lotan R. Modulation by retinoids of mRNA levels for nuclear retinoic acid receptors in murine melanoma cells. Mol Endocrinol. 1990 Oct;4(10):1546–1555. doi: 10.1210/mend-4-10-1546. [DOI] [PubMed] [Google Scholar]
  6. Davis K. D., Berrodin T. J., Stelmach J. E., Winkler J. D., Lazar M. A. Endogenous retinoid X receptors can function as hormone receptors in pituitary cells. Mol Cell Biol. 1994 Nov;14(11):7105–7110. doi: 10.1128/mcb.14.11.7105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dawson M. I., Chao W. R., Pine P., Jong L., Hobbs P. D., Rudd C. K., Quick T. C., Niles R. M., Zhang X. K., Lombardo A. Correlation of retinoid binding affinity to retinoic acid receptor alpha with retinoid inhibition of growth of estrogen receptor-positive MCF-7 mammary carcinoma cells. Cancer Res. 1995 Oct 1;55(19):4446–4451. [PubMed] [Google Scholar]
  8. Dawson M. I., Jong L., Hobbs P. D., Cameron J. F., Chao W. R., Pfahl M., Lee M. O., Shroot B., Pfahl M. Conformational effects on retinoid receptor selectivity. 2. Effects of retinoid bridging group on retinoid X receptor activity and selectivity. J Med Chem. 1995 Aug 18;38(17):3368–3383. doi: 10.1021/jm00017a021. [DOI] [PubMed] [Google Scholar]
  9. Dejean A., Bougueleret L., Grzeschik K. H., Tiollais P. Hepatitis B virus DNA integration in a sequence homologous to v-erb-A and steroid receptor genes in a hepatocellular carcinoma. Nature. 1986 Jul 3;322(6074):70–72. doi: 10.1038/322070a0. [DOI] [PubMed] [Google Scholar]
  10. Fanjul A. N., Bouterfa H., Dawson M., Pfahl M. Potential role for retinoic acid receptor-gamma in the inhibition of breast cancer cells by selective retinoids and interferons. Cancer Res. 1996 Apr 1;56(7):1571–1577. [PubMed] [Google Scholar]
  11. Fanjul A. N., Delia D., Pierotti M. A., Rideout D., Yu J. Q., Pfahl M., Qiu J. 4-Hydroxyphenyl retinamide is a highly selective activator of retinoid receptors. J Biol Chem. 1996 Sep 13;271(37):22441–22446. doi: 10.1074/jbc.271.37.22441. [DOI] [PubMed] [Google Scholar]
  12. Fontana J. A., Hobbs P. D., Dawson M. I. Inhibition of mammary carcinoma growth by retinoidal benzoic acid derivatives. Exp Cell Biol. 1988;56(5):254–263. doi: 10.1159/000163488. [DOI] [PubMed] [Google Scholar]
  13. Fontana J. A. Interaction of retinoids and tamoxifen on the inhibition of human mammary carcinoma cell proliferation. Exp Cell Biol. 1987;55(3):136–144. doi: 10.1159/000163409. [DOI] [PubMed] [Google Scholar]
  14. Forman B. M., Umesono K., Chen J., Evans R. M. Unique response pathways are established by allosteric interactions among nuclear hormone receptors. Cell. 1995 May 19;81(4):541–550. doi: 10.1016/0092-8674(95)90075-6. [DOI] [PubMed] [Google Scholar]
  15. Gebert J. F., Moghal N., Frangioni J. V., Sugarbaker D. J., Neel B. G. High frequency of retinoic acid receptor beta abnormalities in human lung cancer. Oncogene. 1991 Oct;6(10):1859–1868. [PubMed] [Google Scholar]
  16. Gottardis M. M., Bischoff E. D., Shirley M. A., Wagoner M. A., Lamph W. W., Heyman R. A. Chemoprevention of mammary carcinoma by LGD1069 (Targretin): an RXR-selective ligand. Cancer Res. 1996 Dec 15;56(24):5566–5570. [PubMed] [Google Scholar]
  17. Grubbs C. J., Moon R. C., Sporn M. B., Newton D. L. Inhibition of mammary cancer by retinyl methyl ether. Cancer Res. 1977 Feb;37(2):599–602. [PubMed] [Google Scholar]
  18. Hazel T. G., Nathans D., Lau L. F. A gene inducible by serum growth factors encodes a member of the steroid and thyroid hormone receptor superfamily. Proc Natl Acad Sci U S A. 1988 Nov;85(22):8444–8448. doi: 10.1073/pnas.85.22.8444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Houle B., Rochette-Egly C., Bradley W. E. Tumor-suppressive effect of the retinoic acid receptor beta in human epidermoid lung cancer cells. Proc Natl Acad Sci U S A. 1993 Feb 1;90(3):985–989. doi: 10.1073/pnas.90.3.985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hu L., Crowe D. L., Rheinwald J. G., Chambon P., Gudas L. J. Abnormal expression of retinoic acid receptors and keratin 19 by human oral and epidermal squamous cell carcinoma cell lines. Cancer Res. 1991 Aug 1;51(15):3972–3981. [PubMed] [Google Scholar]
  21. Kagechika H., Kawachi E., Hashimoto Y., Himi T., Shudo K. Retinobenzoic acids. 1. Structure-activity relationships of aromatic amides with retinoidal activity. J Med Chem. 1988 Nov;31(11):2182–2192. doi: 10.1021/jm00119a021. [DOI] [PubMed] [Google Scholar]
  22. Kamei Y., Xu L., Heinzel T., Torchia J., Kurokawa R., Gloss B., Lin S. C., Heyman R. A., Rose D. W., Glass C. K. A CBP integrator complex mediates transcriptional activation and AP-1 inhibition by nuclear receptors. Cell. 1996 May 3;85(3):403–414. doi: 10.1016/s0092-8674(00)81118-6. [DOI] [PubMed] [Google Scholar]
  23. Kastner P., Mark M., Chambon P. Nonsteroid nuclear receptors: what are genetic studies telling us about their role in real life? Cell. 1995 Dec 15;83(6):859–869. doi: 10.1016/0092-8674(95)90202-3. [DOI] [PubMed] [Google Scholar]
  24. Koga M., Sutherland R. L. Retinoic acid acts synergistically with 1,25-dihydroxyvitamin D3 or antioestrogen to inhibit T-47D human breast cancer cell proliferation. J Steroid Biochem Mol Biol. 1991 Oct;39(4A):455–460. doi: 10.1016/0960-0760(91)90238-z. [DOI] [PubMed] [Google Scholar]
  25. Kurokawa R., DiRenzo J., Boehm M., Sugarman J., Gloss B., Rosenfeld M. G., Heyman R. A., Glass C. K. Regulation of retinoid signalling by receptor polarity and allosteric control of ligand binding. Nature. 1994 Oct 6;371(6497):528–531. doi: 10.1038/371528a0. [DOI] [PubMed] [Google Scholar]
  26. Lala D. S., Mukherjee R., Schulman I. G., Koch S. S., Dardashti L. J., Nadzan A. M., Croston G. E., Evans R. M., Heyman R. A. Activation of specific RXR heterodimers by an antagonist of RXR homodimers. Nature. 1996 Oct 3;383(6599):450–453. doi: 10.1038/383450a0. [DOI] [PubMed] [Google Scholar]
  27. Lee M. O., Liu Y., Zhang X. K. A retinoic acid response element that overlaps an estrogen response element mediates multihormonal sensitivity in transcriptional activation of the lactoferrin gene. Mol Cell Biol. 1995 Aug;15(8):4194–4207. doi: 10.1128/mcb.15.8.4194. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Li X. S., Shao Z. M., Sheikh M. S., Eiseman J. L., Sentz D., Jetten A. M., Chen J. C., Dawson M. I., Aisner S., Rishi A. K. Retinoic acid nuclear receptor beta inhibits breast carcinoma anchorage independent growth. J Cell Physiol. 1995 Dec;165(3):449–458. doi: 10.1002/jcp.1041650302. [DOI] [PubMed] [Google Scholar]
  29. Liu Y., Lee M. O., Wang H. G., Li Y., Hashimoto Y., Klaus M., Reed J. C., Zhang X. Retinoic acid receptor beta mediates the growth-inhibitory effect of retinoic acid by promoting apoptosis in human breast cancer cells. Mol Cell Biol. 1996 Mar;16(3):1138–1149. doi: 10.1128/mcb.16.3.1138. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Liu Z. G., Smith S. W., McLaughlin K. A., Schwartz L. M., Osborne B. A. Apoptotic signals delivered through the T-cell receptor of a T-cell hybrid require the immediate-early gene nur77. Nature. 1994 Jan 20;367(6460):281–284. doi: 10.1038/367281a0. [DOI] [PubMed] [Google Scholar]
  31. Lotan R. Effects of vitamin A and its analogs (retinoids) on normal and neoplastic cells. Biochim Biophys Acta. 1980 Mar 12;605(1):33–91. doi: 10.1016/0304-419x(80)90021-9. [DOI] [PubMed] [Google Scholar]
  32. Lotan R., Xu X. C., Lippman S. M., Ro J. Y., Lee J. S., Lee J. J., Hong W. K. Suppression of retinoic acid receptor-beta in premalignant oral lesions and its up-regulation by isotretinoin. N Engl J Med. 1995 May 25;332(21):1405–1410. doi: 10.1056/NEJM199505253322103. [DOI] [PubMed] [Google Scholar]
  33. Mangelsdorf D. J., Evans R. M. The RXR heterodimers and orphan receptors. Cell. 1995 Dec 15;83(6):841–850. doi: 10.1016/0092-8674(95)90200-7. [DOI] [PubMed] [Google Scholar]
  34. Milbrandt J. Nerve growth factor induces a gene homologous to the glucocorticoid receptor gene. Neuron. 1988 May;1(3):183–188. doi: 10.1016/0896-6273(88)90138-9. [DOI] [PubMed] [Google Scholar]
  35. Minucci S., Leid M., Toyama R., Saint-Jeannet J. P., Peterson V. J., Horn V., Ishmael J. E., Bhattacharyya N., Dey A., Dawid I. B. Retinoid X receptor (RXR) within the RXR-retinoic acid receptor heterodimer binds its ligand and enhances retinoid-dependent gene expression. Mol Cell Biol. 1997 Feb;17(2):644–655. doi: 10.1128/mcb.17.2.644. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Modiano M. R., Dalton W. S., Lippman S. M., Joffe L., Booth A. R., Meyskens F. L., Jr Phase II study of fenretinide (N-[4-hydroxyphenyl]retinamide) in advanced breast cancer and melanoma. Invest New Drugs. 1990 Aug;8(3):317–319. doi: 10.1007/BF00171846. [DOI] [PubMed] [Google Scholar]
  37. Moon R. C., Mehta R. G. Chemoprevention of mammary cancer by retinoids. Basic Life Sci. 1990;52:213–224. doi: 10.1007/978-1-4615-9561-8_18. [DOI] [PubMed] [Google Scholar]
  38. Moon R. C., Pritchard J. F., Mehta R. G., Nomides C. T., Thomas C. F., Dinger N. M. Suppression of rat mammary cancer development by N-(4-hydroxyphenyl)retinamide (4-HPR) following surgical removal of first palpable tumor. Carcinogenesis. 1989 Sep;10(9):1645–1649. doi: 10.1093/carcin/10.9.1645. [DOI] [PubMed] [Google Scholar]
  39. Moon R. C., Thompson H. J., Becci P. J., Grubbs C. J., Gander R. J., Newton D. L., Smith J. M., Phillips S. L., Henderson W. R., Mullen L. T. N-(4-Hydroxyphenyl)retinamide, a new retinoid for prevention of breast cancer in the rat. Cancer Res. 1979 Apr;39(4):1339–1346. [PubMed] [Google Scholar]
  40. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983 Dec 16;65(1-2):55–63. doi: 10.1016/0022-1759(83)90303-4. [DOI] [PubMed] [Google Scholar]
  41. Nagy L., Thomázy V. A., Shipley G. L., Fésüs L., Lamph W., Heyman R. A., Chandraratna R. A., Davies P. J. Activation of retinoid X receptors induces apoptosis in HL-60 cell lines. Mol Cell Biol. 1995 Jul;15(7):3540–3551. doi: 10.1128/mcb.15.7.3540. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Nervi C., Vollberg T. M., George M. D., Zelent A., Chambon P., Jetten A. M. Expression of nuclear retinoic acid receptors in normal tracheobronchial cells and in lung carcinoma cells. Exp Cell Res. 1991 Jul;195(1):163–170. doi: 10.1016/0014-4827(91)90512-s. [DOI] [PubMed] [Google Scholar]
  43. Nervi C., Vollberg T. M., George M. D., Zelent A., Chambon P., Jetten A. M. Expression of nuclear retinoic acid receptors in normal tracheobronchial cells and in lung carcinoma cells. Exp Cell Res. 1991 Jul;195(1):163–170. doi: 10.1016/0014-4827(91)90512-s. [DOI] [PubMed] [Google Scholar]
  44. Perlmann T., Jansson L. A novel pathway for vitamin A signaling mediated by RXR heterodimerization with NGFI-B and NURR1. Genes Dev. 1995 Apr 1;9(7):769–782. doi: 10.1101/gad.9.7.769. [DOI] [PubMed] [Google Scholar]
  45. Roman S. D., Clarke C. L., Hall R. E., Alexander I. E., Sutherland R. L. Expression and regulation of retinoic acid receptors in human breast cancer cells. Cancer Res. 1992 Apr 15;52(8):2236–2242. [PubMed] [Google Scholar]
  46. Roy B., Taneja R., Chambon P. Synergistic activation of retinoic acid (RA)-responsive genes and induction of embryonal carcinoma cell differentiation by an RA receptor alpha (RAR alpha)-, RAR beta-, or RAR gamma-selective ligand in combination with a retinoid X receptor-specific ligand. Mol Cell Biol. 1995 Dec;15(12):6481–6487. doi: 10.1128/mcb.15.12.6481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Seewaldt V. L., Johnson B. S., Parker M. B., Collins S. J., Swisshelm K. Expression of retinoic acid receptor beta mediates retinoic acid-induced growth arrest and apoptosis in breast cancer cells. Cell Growth Differ. 1995 Sep;6(9):1077–1088. [PubMed] [Google Scholar]
  48. Sheikh M. S., Shao Z. M., Chen J. C., Hussain A., Jetten A. M., Fontana J. A. Estrogen receptor-negative breast cancer cells transfected with the estrogen receptor exhibit increased RAR alpha gene expression and sensitivity to growth inhibition by retinoic acid. J Cell Biochem. 1993 Dec;53(4):394–404. doi: 10.1002/jcb.240530417. [DOI] [PubMed] [Google Scholar]
  49. Sheikh M. S., Shao Z. M., Li X. S., Dawson M., Jetten A. M., Wu S., Conley B. A., Garcia M., Rochefort H., Fontana J. A. Retinoid-resistant estrogen receptor-negative human breast carcinoma cells transfected with retinoic acid receptor-alpha acquire sensitivity to growth inhibition by retinoids. J Biol Chem. 1994 Aug 26;269(34):21440–21447. [PubMed] [Google Scholar]
  50. Spanjaard R. A., Sugawara A., Ikeda M., Chin W. W. Evidence that retinoid X receptors mediate retinoid-dependent transcriptional activation of the retinoic acid receptor beta gene in S91 melanoma cells. J Biol Chem. 1995 Jul 21;270(29):17429–17436. doi: 10.1074/jbc.270.29.17429. [DOI] [PubMed] [Google Scholar]
  51. Sucov H. M., Murakami K. K., Evans R. M. Characterization of an autoregulated response element in the mouse retinoic acid receptor type beta gene. Proc Natl Acad Sci U S A. 1990 Jul;87(14):5392–5396. doi: 10.1073/pnas.87.14.5392. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Swisshelm K., Ryan K., Lee X., Tsou H. C., Peacocke M., Sager R. Down-regulation of retinoic acid receptor beta in mammary carcinoma cell lines and its up-regulation in senescing normal mammary epithelial cells. Cell Growth Differ. 1994 Feb;5(2):133–141. [PubMed] [Google Scholar]
  53. Taneja R., Roy B., Plassat J. L., Zusi C. F., Ostrowski J., Reczek P. R., Chambon P. Cell-type and promoter-context dependent retinoic acid receptor (RAR) redundancies for RAR beta 2 and Hoxa-1 activation in F9 and P19 cells can be artefactually generated by gene knockouts. Proc Natl Acad Sci U S A. 1996 Jun 11;93(12):6197–6202. doi: 10.1073/pnas.93.12.6197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Wetherall N. T., Taylor C. M. The effects of retinoid treatment and antiestrogens on the growth of T47D human breast cancer cells. Eur J Cancer Clin Oncol. 1986 Jan;22(1):53–59. doi: 10.1016/0277-5379(86)90342-1. [DOI] [PubMed] [Google Scholar]
  55. Willy P. J., Umesono K., Ong E. S., Evans R. M., Heyman R. A., Mangelsdorf D. J. LXR, a nuclear receptor that defines a distinct retinoid response pathway. Genes Dev. 1995 May 1;9(9):1033–1045. doi: 10.1101/gad.9.9.1033. [DOI] [PubMed] [Google Scholar]
  56. Wilson T. E., Fahrner T. J., Johnston M., Milbrandt J. Identification of the DNA binding site for NGFI-B by genetic selection in yeast. Science. 1991 May 31;252(5010):1296–1300. doi: 10.1126/science.1925541. [DOI] [PubMed] [Google Scholar]
  57. Woronicz J. D., Calnan B., Ngo V., Winoto A. Requirement for the orphan steroid receptor Nur77 in apoptosis of T-cell hybridomas. Nature. 1994 Jan 20;367(6460):277–281. doi: 10.1038/367277a0. [DOI] [PubMed] [Google Scholar]
  58. Wu Q., Li Y., Liu R., Agadir A., Lee M. O., Liu Y., Zhang X. Modulation of retinoic acid sensitivity in lung cancer cells through dynamic balance of orphan receptors nur77 and COUP-TF and their heterodimerization. EMBO J. 1997 Apr 1;16(7):1656–1669. doi: 10.1093/emboj/16.7.1656. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Zhang X. K., Hoffmann B., Tran P. B., Graupner G., Pfahl M. Retinoid X receptor is an auxiliary protein for thyroid hormone and retinoic acid receptors. Nature. 1992 Jan 30;355(6359):441–446. doi: 10.1038/355441a0. [DOI] [PubMed] [Google Scholar]
  60. Zhang X. K., Lehmann J., Hoffmann B., Dawson M. I., Cameron J., Graupner G., Hermann T., Tran P., Pfahl M. Homodimer formation of retinoid X receptor induced by 9-cis retinoic acid. Nature. 1992 Aug 13;358(6387):587–591. doi: 10.1038/358587a0. [DOI] [PubMed] [Google Scholar]
  61. Zhang X. K., Liu Y., Lee M. O., Pfahl M. A specific defect in the retinoic acid response associated with human lung cancer cell lines. Cancer Res. 1994 Nov 1;54(21):5663–5669. [PubMed] [Google Scholar]
  62. Zhang X. K., Pfahl M. Hetero- and homodimeric receptors in thyroid hormone and vitamin A action. Receptor. 1993 Fall;3(3):183–191. [PubMed] [Google Scholar]
  63. Zhang X. K., Salbert G., Lee M. O., Pfahl M. Mutations that alter ligand-induced switches and dimerization activities in the retinoid X receptor. Mol Cell Biol. 1994 Jun;14(6):4311–4323. doi: 10.1128/mcb.14.6.4311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Zhao Z., Zhang Z. P., Soprano D. R., Soprano K. J. Effect of 9-cis-retinoic acid on growth and RXR expression in human breast cancer cells. Exp Cell Res. 1995 Aug;219(2):555–561. doi: 10.1006/excr.1995.1264. [DOI] [PubMed] [Google Scholar]
  65. de Thé H., Vivanco-Ruiz M. M., Tiollais P., Stunnenberg H., Dejean A. Identification of a retinoic acid responsive element in the retinoic acid receptor beta gene. Nature. 1990 Jan 11;343(6254):177–180. doi: 10.1038/343177a0. [DOI] [PubMed] [Google Scholar]
  66. van der Burg B., van der Leede B. M., Kwakkenbos-Isbrücker L., Salverda S., de Laat S. W., van der Saag P. T. Retinoic acid resistance of estradiol-independent breast cancer cells coincides with diminished retinoic acid receptor function. Mol Cell Endocrinol. 1993 Feb;91(1-2):149–157. doi: 10.1016/0303-7207(93)90267-n. [DOI] [PubMed] [Google Scholar]
  67. van der Leede B. J., Folkers G. E., van den Brink C. E., van der Saag P. T., van der Burg B. Retinoic acid receptor alpha 1 isoform is induced by estradiol and confers retinoic acid sensitivity in human breast cancer cells. Mol Cell Endocrinol. 1995 Mar;109(1):77–86. doi: 10.1016/0303-7207(95)03487-r. [DOI] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES